Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 14, 2018 - Issue 3
180
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Flow field control to mitigate airborne sea salt adhesion on bridge girders

, , , , &
Pages 348-364 | Received 28 Oct 2016, Accepted 01 Apr 2017, Published online: 25 Jul 2017
 

Abstract

In order to realise effective maintenance and enhanced durability of structures, it is important to also reduce corrosion of bridges by airborne sea salt. The objective of this study is to reduce airborne sea salt adhesion amount on steel girder bridges by employing aerodynamic countermeasures. The study bridge is a typical metropolitan highway bridge with 8 I-shaped steel girders located in Japan. Aerodynamic countermeasure devices are employed to change the flow field around the bridge structure in an attempt to reduce wind velocity normal to the bridge girders. Devices existing on urban bridges such as noise barriers, median barriers, and facilities for passage of drainage pipes and electric cables, modelled as horizontal plates, are modified and investigated for their ability to reduce airborne sea salt adhesion amount. As additional devices, vertical plates are installed to change the flow separation and their applicability is also studied. Computational fluid dynamics is employed for flow field simulations and airborne sea salt adhesion amount is estimated by the improved concentration flux method. Findings indicate that horizontal plates and vertical plates significantly reduce airborne sea salt adhesion amount. Noise barriers and median barriers can also reduce airborne sea salt adhesion amount.

Acknowledgements

The authors would also like to express their gratitude to Mr Soichiro HATA for his contribution towards making this work a success.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.