Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 18, 2022 - Issue 3
186
Views
3
CrossRef citations to date
0
Altmetric
Articles

Load rating of bridge-size reinforced concrete arch culverts

, &
Pages 362-375 | Received 16 Dec 2019, Accepted 06 Aug 2020, Published online: 04 Dec 2020
 

Abstract

Of the 604,485 bridges in the United States, approximately 21% are culverts having a span of 6 m (20 ft) or greater. The load rating of typical bridges presents numerous challenges. Developing load ratings for non-typical structures, such as buried arch-shaped culverts is more complex because of the culverts’ unique geometric configuration and their interaction with soil media. This paper proposes an alternative analytical method for load rating in-service reinforced concrete (RC) arch culverts that overcomes the limitations of the widely used elastic frame concept while being straightforward to implement. The proposed analytical method uses two-dimensional finite element models of the arch structure and surrounding soil media. The finite element model was first validated against experimental tests on a full-scale RC arch culvert, subjected to simulated live loads. The validated FE model was used in load rating analysis of 21 RC arch culverts with large fills. It was found that for arch culverts with fills exceeding 2.43 m (8 ft.), the controlling actions are bending moments at the crown and haunch. For culverts with fills greater than 3.05 m (10 ft.), live load effects become negligible. A revised rating formula is proposed for culverts with this characteristic.

Data availability statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Funding for the project was provided by the Federal Highway Administration (FHWA) and the Kentucky Transportation Cabinet (KYTC).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.