615
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Global dynamical properties of two discrete-time exponential systems

ORCID Icon
Pages 790-804 | Received 15 Apr 2019, Accepted 14 Jun 2019, Published online: 04 Jul 2019

Abstract

We explore the global dynamics of following three directional discrete-time exponential systems of difference equations: xn+1=α19+β19eynγ19+zn1,yn+1=α20+β20eznγ20+xn1,zn+1=α21+β21exnγ21+yn1, xn+1=α22+β22eznγ22+xn1,yn+1=α23+β23exnγ23+yn1,zn+1=α24+β24eynγ24+zn1,where αi,βi,γi, i=19,20,,24 and xi,yi,zi,i=0,1 are belonging to R0. Precisely, we explore the boundedness and persistence of positive solution, existence of invariant rectangle, existence and uniqueness of positive equilibrium point, local and global dynamics about the unique positive equilibrium, and rate of convergence of these discrete-time exponential systems. Finally, theoretical results are verified numerically.

Mathematics Subject Classifications:

1. Introduction

Global dynamical properties of discrete-time exponential difference equations or systems of difference equations have widely investigated in the recent years. For instance, Ozturk et al. [Citation1] have explored the dynamical properties of following exponential difference equation: (1) xn+1=α1+α2exnα3+xn1,n=0,1,,(1)

where αi,i=1,2,3 and xi,i=0,1 are belonging to R0. Papaschinopoulos et al. [Citation2] have explored the dynamical properties of following discrete-time exponential systems: (2) xn+1=α1+α2eynα3+yn1,yn+1=α4+α5exnα6+xn1xn+1=α1+α2eynα3+xn1,yn+1=α4+α5exnα6+yn1xn+1=α1+α2exnα3+yn1,yn+1=α4+α5eynα6+xn1,(2)

where αi,i=1,2,,6 and xi,yi,i=0,1 are belonging to R0. Motivated from above studies, we explore the global dynamics of following two three-species discrete-time models which are extension of the work of [Citation1,Citation2]: (3) xn+1=α19+β19eynγ19+zn1,yn+1=α20+β20eznγ20+xn1,zn+1=α21+β21exnγ21+yn1,(3) (4) xn+1=α22+β22eznγ22+xn1,yn+1=α23+β23exnγ23+yn1,zn+1=α24+β24eynγ24+zn1,(4) where αi,βi,γi, i=19,20,,24 and xi,yi,zi,i=0,1 are belonging to R0. Discrete-time systems (3) and (4) viewed as models in mathematical biology where biological interpretation of parameters αi,βi,γi, i=19,20,,24 are depicted in Table :

Table 1. Parameters of the discrete-time models (3) and (4) along their Biological interpretations.

Our main contribution in this paper is to explore the global dynamical properties for discrete-time systems (3) and (4). Global dynamics and rate of convergence of (3) are explored in Section 2. This includes the study of boundedness and persistence, existence of invariant rectangle, existence of the unique +ve equilibrium, global dynamics, and Rate of convergence. Same analysis for system (4) is explored in Section 3. Theoretical results are verified numerically in Section 4. Conclusion is given in Section 5.

2. Dynamics of the system (3)

2.1. Boundedness and persistence

In the following theorem, we explore that every +ve solution {(xn,yn,zn)}n=1 of (3) is bounded and persists (see [Citation3,Citation4]).

Theorem 2.1:

The +ve solution {(xn,yn,zn)}n=1 of (3) is bounded and persists.

Proof:

If the +ve solution of (3) is {(xn,yn,zn)}n=1 then (5) xnα19+β19γ19=U19,ynα20+β20γ20=U20,znα21+β21γ21=U21,n=0,1,.(5) From (3) and (5), one gets (6) xnα19+β19eα20+β20γ20γ19+α21+β21γ21=L19ynα20+β20eα21+β21γ21γ20+α19+β19γ19=L20znα21+β21eα19+β19γ19γ21+α20+β20γ20=L21,(6) n=2,3,. Finally from (5) and (6), one gets

L19xnU19,L20ynU20,L21znU21,n=3,4,.

2.2. Existence of invariant rectangle

Theorem 2.2:

If {(xn,yn,zn)}n=1 is a +ve solution of (3) then its corresponding invariant rectangle is [L19,U19]×[L20,U20×L21,U21] where L19=α19+β19eα20+β20γ20γ19+α21+β21γ21,U19=α19+β19γ19,L20=α20+β20eα21+β21γ21γ20+α19+β19γ19,U20=α20+β20γ20,L21=α21+β21eα19+β19γ19γ21+α20+β20γ20andU21=α21+β21γ21.

Proof:

Follows by induction.

2.3. Existence of unique +ve equilibrium, global and local dynamics

Hereafter we will study existence of the +ve equilibrium, global and local dynamics of (3). It is worthwhile to mentioned that in more general setting, system (3) can also be written as (7) xn+1=f(yn,zn1)yn+1=g(zn,xn1),zn+1=h(xn,yn1).(7)

Lemma 2.1:

Let [a1,b1],[a2,b2], and [a3,b3] be intervals of real numbers, s.t., (8) f:[a1,b1]×[a2,b2]×[a3,b3][a1,b1]g:[a1,b1]×[a2,b2]×[a3,b3][a2,b2]h:[a1,b1]×[a2,b2]×[a3,b3][a3,b3],(8) where f,g and h are continuous functions that satisfy the following conditions:

  1. Let f(y,z) is non-increasing w.r.t. y(resp.z)  z(resp.y); g(z,x) is non-increasing w.r.t. z(resp.x)  x(resp.z) and h(x,y) is non-increasing w.r.t. x(resp.y)  y(resp.x).

  2. If(m1,M1,m2,M2,m3,M3)[a1,b1]2×[a2,b2]2×[a3,b3]2 is a solution of (9) m1=f(M2,M3)M1=f(m2,m3)m2=g(M1,M3)M2=g(m1,m3)m3=h(M1,M2)M3=h(m1,m2),(9)

then m1=M1,m2=M2,m3=M3. Then (7) has a unique +ve equilibrium (x¯,y¯,z¯)[a1,b1]×[a2,b2]×[a3,b3] and every +ve solution of (7) satisfies (10) xn0[a1,b1],xn0+1[a1,b1]yn0[a2,b2],yn0+1[a2,b2]zn0[a3,b3],zn0+1[a3,b3],(10) n0N  tends to unique +ve equilibrium (x¯,y¯,z¯)[a1,b1]×[a2,b2]×[a3,b3].

Proof:

Set (11) m1(0)=a1,m2(0)=a2,m3(0)=a3M1(0)=b1,M2(0)=b2,M3(0)=b3.(11) And for i=1,2,3,, define (12) m1(i)=f(M2(i1),M3(i1)),M1(i)=f(m2(i1),m3(i1))m2(i)=g(M1(i1),M3(i1)),M2(i)=g(m1(i1),m3(i1))m3(i)=h(M1(i1),M2(i1)),M3(i)=h(m1(i1),m2(i1)).(12) Clearly (13) m1(0)m1(1),m2(0)m2(1),m3(0)m3(1)M1(0)M1(1),M2(0)M2(1),M3(0)M3(1).(13) Using the monotonicity of f,g and h one gets (14) m1(1)=f(M2(0),M3(0))f(M2(1),M3(1))=m1(2)m2(1)=g(M1(0),M3(0))g(M1(1),M3(1))=m2(2)m3(1)=h(M1(0),M2(0))h(M1(1),M2(1))=m3(2)M1(1)=f(m2(0),m3(0))f(m2(1),m3(1))=M1(2)M2(1)=g(m1(0),m3(0))g(m1(1),m3(1))=M2(2)M3(1)=h(m1(0),m2(0))h(m1(1),m2(1))=M3(2).(14) By induction, we obtain for i=1,2,3,, (15) a1=m1(0)m1(1)m1(i)M1(i)M1(1)M1(0)=b1a2=m2(0)m2(1)m2(i)M2(i)M2(1)M2(0)=b2a3=m3(0)m3(1)m3(i)M3(i)M3(1)M3(0)=b3.(15) Clearly (16) m1(0)xn0M1(0)m2(0)yn0M2(0)m3(0)zn0M3(0),(16) which by the monotonicity of f,g and h Implies (17) m1(1)=f(M2(0),M3(0))xn0+1=f(y0,z0)f(m2(0),m3(0))=M1(1)m2(1)=g(M1(0),M3(0))yn0+1=g(x0,z0)g(m1(0),m3(0))=M2(1)m3(1)=h(M1(0),M2(0))zn0+1=h(x0,y0)h(m1(0),m2(0))=M3(1)m1(2)=f(M2(1),M3(1))xn0+2=f(y1,z1)f(m2(1),m3(1))=M1(2)m2(2)=g(M1(1),M3(1))yn0+2=g(x1,z1)g(m1(1),m3(1))=M2(2)m3(2)=h(M1(1),M2(1))zn0+2=h(x1,y1)h(m1(1),m2(1))=M3(2).(17) By induction it follows that (18) m1(k)xkM1(k)m2(k)ykM2(k)m3(k)zkM3(k).(18) Thus for every k=0,1,, there exist numbers m1,m2,m3,M1,M2,M3, s.t., (19) m1=limkm1(k),m2=limkm2(k),m3=limkm3(k)M1=limkM1(k),M2=limkM2(k),M3=limkM3(k).(19) Clearly (20) m1lim_kxklim¯kxkM1m2lim_kyklim¯kykM2m3lim_kzklim¯kzkM3.(20) Using the continuity of f,g and h, equation (12) then implies that (21) m1=f(M2,M3),M1=f(m2,m3)m2=g(M1,M3),M2=g(m1,m3)m3=h(M1,M2),M3=h(m1,m2.(21) By assumption (b) one gets: m1=M1=x¯,m2=M2=y¯,m3=M3=z¯.

Hereafter based on Lemma 2.1, we will prove the following Theorem:

Theorem 2.3:

If (22) β19β20β21<γ19γ20γ21,(22) then Γ1=(x¯,y¯,z¯)[L19,U19]×[L20,U20×L21,U21] is the unique +ve equilibrium of (3) and every +ve solution of (3) tends to Γ1 of (3) as n.

Proof:

From (3) one has (23) f(y,z)=α19+β19eyγ19+z,g(x,z)=α20+β20ezγ20+x,h(x,y)=α21+β21exγ21+y.(23) It is clear that f,g and h satisfies the hypothesis of Lemma 2.1 and let m1,m2,m3,M1,M2,M3 be positive numbers, s.t., (24) m1=α19+β19eM2γ19+M3,M1=α19+β19em2γ19+m3m2=α20+β20eM3γ20+M1,M2=α20+β20em3γ20+m1m3=α21+β21eM1γ21+M2,M3=α21+β21em1γ21+m2.(24) From (24) one gets (25) eM2=m1(γ19+M3)α19β19,em2=M1(γ19+m3)α19β19eM3=m2(γ20+M1)α20β20,em3=M2(γ20+m1)α20β20eM1=m3(γ21+M2)α21β21,em1=M3(γ21+m2)α21β21,(25) which implies that (26) m1M1=β19γ19(eM2em2)=β19γ19eM2m2(em2eM2)m2M2=β20γ20(eM3em3)=β20γ20eM3m3(em3eM3)m3M3=β21γ21(eM1em1)=β21γ21eM1m1(em1eM1).(26) Moreover one gets (27) em2eM2=eζ(m2M2),min{m2,M2}ζmax{m2,M2}em3eM3=eθ(m3M3),min{m3,M3}θmax{m3,M3}em1eM1=eη(m1M1),min{m1,M1}ηmax{m1,M1}.(27) In view of (27), equation (26) then implies that (28) m1M1=β19γ19eM2m2+ζ(m2M2)m2M2=β20γ20eM3m3+θ(m3M3)m3M3=β21γ21eM1m1+η(m1M1).(28) From (28) one gets (29) |m1M1|β19γ19|m2M2||m2M2|β20γ20|m3M3||m3M3|β21γ21|m1M1|.(29) From (22) and (29) one gets (30) 1β19β20β21γ19γ20γ21|m1M1|01β19β20β21γ19γ20γ21|m2M2|01β19β20β21γ19γ20γ21|m3M3|0.(30) Finally equation (30) then implies that m1=M1,m2=M2 and m3=M3. Therefore from (5) and (6) and statement (b) of Lemma 2.1, (3) has a unique +ve equilibrium Γ1 and every +ve solution of (3) tends to Γ1 as n.

Hereafter global dynamics of (3) about Γ1 is investigated.

Theorem 2.4:

Assume that (22) hold and if (31) 1γ19+L21β19eL20(α20+β20eL21)(γ20+L19)2+β21eL19(α19+β19eL20)(γ19+L21)(γ21+L20)+β20eL21(α21+β21eL19)(γ20+L19)(γ21+L20)2+1(γ19+L21)(γ20+L19)(γ21+L20)β19β20β21eL19L20L21+×(α19+β19eL20)(α20+β20eL21)(α21+β21eL19)(γ19+L21)(γ20+L19)(γ21+L20)<1,(31) then Γ1 of (3) is globally asymptotically stable.

Proof:

Jacobian matrix JΓ1 about Γ1 is (32) JΓ1=00A100A21000000B100B20001000C100C200000010,(32) where (33) A1=β19ey¯γ19+z¯,A2=α19+β19ey¯(γ19+z¯)2,B1=α20+β20ez¯(γ20+x¯)2,B2=β20ez¯γ20+x¯,C1=β21ex¯γ21+y¯,C2=α21+β21ex¯(γ21+y¯)2.(33) Moreover Characteristic equation of JΓ1 about Γ1 is given by (34) λ6+μ1λ3+μ2=0,(34) where (35) μ1=(A1B1+A2C1+A1B2C1+B2C2),μ2=A2B1C2.(35) Now (36) i=12|μi|=β19ey¯(α20+β20ez¯)(γ19+z¯)(γ20+x¯)2+β19β20β21ex¯y¯z¯(γ19+z¯)(γ20+x¯)(γ21+y¯)+β21ex¯(α19+β19ey¯)(γ19+z¯)2(γ21+y¯)+β20ez¯(α21+β21ex¯)(γ20+x¯)(γ21+y¯)2×(α19+β19ey¯)(α20+β20ez¯)(α21+β21ex¯)(γ19+z¯)2(γ20+x¯)2(γ21+y¯)2,β19β20β21eL19L20L21(γ19+L21)(γ20+L19)(γ21+L20)+β19eL20(α20+β20eL21)(γ19+L21)(γ20+L19)2+β21eL19(α19+β19eL20)(γ19+L21)2(γ21+L20)+β20eL21(α21+β21eL19)(γ20+L19)(γ21+L20)2×(α19+β19eL20)(α20+β20eL21)(α21+β21eL19)(γ19+L21)2(γ20+L19)2(γ21+L20)2,=1γ19+L21β19eL20(α20+β20eL21)(γ20+L19)2+β21eL19(α19+β19eL20)(γ19+L21)(γ21+L20)+β20eL21(α21+β21eL19)(γ20+L19)(γ21+L20)2+1(γ19+L21)(γ20+L19)(γ21+L20)×β19β20β21eL19L20L21+(α19+β19eL20)(α20+β20eL21)(α21+β21eL19)(γ19+L21)(γ20+L19)(γ21+L20).(36) Assuming condition (31) holds then from (36) one get i=12|μi|<1 and hence Theorem 1.5 of [Citation5] implies that Γ1 of (3) is locally asymptotically stable. Moreover by Theorem 2.3, Γ1 of (3) is globally asymptotically stable.

Hereafter Rate of convergence about Γ1 of (3) is investigated motivated from the work of [Citation6].

2.4. Rate of convergence

Theorem 2.5:

If {(xn,yn,zn)}n=1 is a  +ve solution of (3), s.t.,. (37) limnxn=x¯limnyn=y¯limnzn=z¯,(37) where (38) x¯[L19,U19]y¯[L20,U20]z¯[L21,U21].(38) Then error vector en=(en19,en119,en20,en120,en21,en121)T of every +ve solution of (3) satisfying (39) limn(en)1n=|λ1,2,3,4,5,6JΓ1|limnen+1en=|λ1,2,3,4,5,6JΓ1|,(39) where |λ1,2,3,4,5,6JΓ1| are the Characteristic Root of JΓ1.

Proof:

If {(xn,yn,zn)}n=1 is a +ve solution of (3), s.t., (37) along with (38) hold. For error terms one has (40) xn+1x¯=α19+β19eynγ19+zn1α19+β19ey¯γ19+z¯=β19(eyney¯)(γ19+zn1)(yny¯)(yny¯)α19+β19ey¯(γ19+zn1)(γ19+z¯)(zn1z¯)yn+1y¯=α20+β20eznγ20+xn1α20+β20ez¯γ20+x¯=β20(eznez¯)(γ20+xn1)(znz¯)(znz¯)α20+β20ez¯(γ20+xn1)(γ20+x¯)(xn1x¯)zn+1z¯=α21+β21exnγ21+yn1α21+β21ex¯γ21+y¯=β21(exnex¯)(γ21+yn1)(xnx¯)(xnx¯)α21+β21ex¯(γ21+yn1)(γ21+y¯)(yn1y¯),(40) that is (41) xn+1x¯=β19(eyney¯)(γ19+zn1)(yny¯)(yny¯)α19+β19ey¯(γ19+zn1)(γ19+z¯)(zn1z¯)yn+1y¯=β20(eznez¯)(γ20+xn1)(znz¯)(znz¯)α20+β20ez¯(γ20+xn1)(γ20+x¯)(xn1x¯)zn+1z¯=β21(exnex¯)(γ21+yn1)(xnx¯)(xnx¯)α21+β21ex¯(γ21+yn1)(γ21+y¯)(yn1y¯).(41) Set (42) en19=xnx¯en20=yny¯en21=znz¯.(42) By (42), (41) gives (43) en+119=anen20+bnen121en+120=cnen119+dnen21en+121=enen19+fnen120,(43) where (44) an=β19(eyney¯)(γ19+zn1)(yny¯),bn=α19+β19ey¯(γ19+zn1)(γ19+z¯),cn=α20+β20ez¯(γ20+xn1)(γ20+x¯),dn=β20(eznez¯)(γ20+xn1)(znz¯),en=β21(exnex¯)(γ21+yn1)(xnx¯),fn=α21+β21ex¯(γ21+yn1)(γ21+y¯).(44) Taking the limits of an,bn,cn,dn,en and fn one gets (45) limnan=β19ey¯γ19+z¯,limnbn=α19+β19ey¯(γ19+z¯)2,limncn=α20+β20ez¯(γ20+x¯)2,limndn=β20ez¯γ20+x¯,limnen=β21ex¯γ21+y¯,limnfn=α21+β21ex¯(γ21+y¯)2,(45) that is (46) an=β19ey¯γ19+z¯+α20n,bn=α19+β19ey¯(γ19+z¯)2+α21n1,cn=α20+β20ez¯(γ20+x¯)2+α19n1dn=β20ez¯γ20+x¯+α21n,en=β21ex¯γ21+y¯+α19n,fn=α21+β21ex¯(γ21+y¯)2+α20n1,(46) where α19n,α19n1,α20n,α20n1,α21n,α21n10 as n. Now we have system (1.10) of [Citation7], where (47) A=00β19ey¯γ19+z¯1000α20+β20ez¯(γ20+x¯)20001β21ex¯γ21+y¯0000000α19+β19ey¯(γ19+z¯)20000β20ez¯γ20+x¯0000α21+β21ex¯(γ21+y¯)200010,(47) and (48) B(n)=00α20n00α21n11000000α19n100α21n0001000α19n00α20n100000010,(48)

and B(n)0, n. Thus error terms about Γ1 similar to (32) is (49) en+119en19en+120en20en+121en21=00β19ey¯γ19+z¯1000α20+β20ez¯(γ20+x¯)20001β21ex¯γ21+y¯00000=00α19+β19ey¯(γ19+z¯)20000β20ez¯γ20+x¯0000α21+β21ex¯(γ21+y¯)200010en19en119en20en120en21en121.(49)

3. Dynamics of the system (4)

3.1. Boundedness and persistence

Theorem 3.1:

The +ve solution {(xn,yn,zn)}n=1 of (4) is bounded and persists.

Proof:

If the +ve solution of (4) is {(xn,yn,zn)}n=1then (50) xnα22+β22γ22=U22,ynα23+β23γ23=U23,znα24+β24γ24=U24,n=0,1,.(50) In addition from (4) and (50), one gets (51) xnα22+β22eα24+β24γ24γ22+α22+β22γ22=L22ynα23+β23eα22+β22γ22γ23+α23+β23γ23 =L23znα24+β24eα23+β23γ23γ24+α24+β24γ24 =L24,(51) n=2,3,. Finally from (50) and (51), one gets L22xnU22,L23ynU23,L24znU24,n=3,4,.

3.2. Existence of invariant rectangle

Theorem 3.2:

If {(xn,yn,zn)}n=1 is a +ve solution of (4) then its corresponding invariant rectangle is [L22,U22]×[L23,U23×L24,U24] where L22=α22+β22eα24+β24γ24γ22+α22+β22γ22,U22=α22+β22γ22,L23=α23+β23eα22+β22γ22γ23+α23+β23γ23,U23=α23+β23γ23,L24=α24+β24eα23+β23γ23γ24+α24+β24γ24andU24=α24+β24γ24.

3.3. Existence of the unique +ve equilibrium, global and local dynamics

We will study existence of the +ve equilibrium, local and global dynamics of (4). It is also noted that in more general notation (4) can also be written as (52) xn+1=f(xn1,zn),yn+1=g(xn,yn1),zn+1=h(yn,zn1).(52)

Lemma 3.1:

Let [a1,b1],[a2,b2] and [a3,b3] be intervals of real numbers, s.t., (53) f:[a1,b1]×[a2,b2]×[a3,b3][a1,b1]g:[a1,b1]×[a2,b2]×[a3,b3][a2,b2]h:[a1,b1]×[a2,b2]×[a3,b3][a3,b3],(53) where f,g and h are differentiable functions that satisfy the following conditions:

  1. Let f(x,z) is non-increasing w.r.t. x(resp.z)  z(resp.x); g(x,y) is non-increasing w.r.t. x(resp.y)  y(resp.x) and h(y,z) is non-increasing w.r.t. y(resp.z)  z(resp.y.);

  2. If (m1,M1,m2,M2,m3,M3)[a1,b1]2×[a2,b2]2×[a3,b3]2 is a solution of (54) m1=f(M1,M3),M1=f(m1,m3)m2=g(M1,M2),M2=g(m1,m2)m3=h(M2,M3),M3=h(m2,m3),(54)

then m1=M1,m2=M2,m3=M3. Then (x¯,y¯,z¯)[a1,b1]×[a2,b2]×[a3,b3] is the unique +ve equilibrium of (52) and +ve solution of (52) satisfies (55) xn0[a1,b1],xn0+1[a1,b1]yn0[a2,b2],yn0+1[a2,b2]zn0[a3,b3],zn0+1[a3,b3],(55) n0N tends to (x¯,y¯,z¯)[a1,b1]×[a2,b2]×[a3,b3].

Proof:

Set (56) m1(0)=a1,m2(0)=a2,m3(0)=a3M1(0)=b1,M2(0)=b2,M3(0)=b3.(56) And for i=1,2,3,, define (57) m1(i)=f(M1(i1),M3(i1)),M1(i)=f(m1(i1),m3(i1))m2(i)=g(M1(i1),M2(i1)),M2(i)=g(m1(i1),m2(i1))m3(i)=h(M2(i1),M3(i1)),M3(i)=h(m2(i1),m3(i1)).(57) Clearly (58) m1(0)m1(1),m2(0)m2(1),m3(0)m3(1)M1(0)M1(1),M2(0)M2(1),M3(0)M3(1).(58) Using the monotonicity of f,g and h one gets: (59) m1(1)=f(M1(0),M3(0))f(M1(1),M3(1))=m1(2)m2(1)=g(M1(0),M2(0))g(M1(1),M2(1))=m2(2)m3(1)=h(M2(0),M3(0))h(M2(1),M3(1))=m3(2)M1(1)=f(m1(0),m3(0))f(m1(1),m3(1))=M1(2)M2(1)=g(m1(0),m2(0))g(m1(1),m2(1))=M2(2)M3(1)=h(m2(0),m3(0))h(m2(1),m3(1))=M3(2).(59) By induction, we obtain for i=1,2,3,, (60) a1=m1(0)m1(1)m1(i)M1(i)M1(1)M1(0)=b1a2=m2(0)m2(1)m2(i)M2(i)M2(1)M2(0)=b2a3=m3(0)m3(1)m3(i)M3(i)M3(1)M3(0)=b3.(60) Moreover it is clear that (61) m1(0)xn0M1(0)m2(0)yn0M2(0)m3(0)zn0M3(0).(61) Now monotonicity of f,g and h then implies that (62) m1(1)=f(M1(0),M3(0))xn0+1=f(x0,z0)f(m1(0),m3(0))=M1(1)m2(1)=g(M1(0),M2(0))yn0+1=g(x0,y0)g(m1(0),m2(0))=M2(1)m3(1)=h(M2(0),M3(0))zn0+1=h(y0,z0)h(m2(0),m3(0))=M3(1)m1(2)=f(M1(1),M3(1))xn0+2=f(x1,z1)f(m1(1),m3(1))=M1(2)m2(2)=g(M1(1),M2(1))yn0+2=g(x1,y1)g(m1(1),m2(1))=M2(2)m3(2)=h(M2(1),M3(1))zn0+2=h(y1,z1)h(m2(1),m3(1))=M3(2).(62) By induction it follows that (63) m1(k)xkM1(k)m2(k)ykM2(k)m3(k)zkM3(k).(63) Thus for every k=0,1,, there exist numbers m1,m2,m3,M1,M2,M3, s.t., (64) m1=limkm1(k),m2=limkm2(k),m3=limkm3(k)M1=limkM1(k),M2=limkM2(k),M3=limkM3(k).(64) Clearly, (65) m1lim_kxklim¯kxkM1m2lim_kyklim¯kykM2m3lim_kzklim¯kzkM3.(65) Using the continuity of f,g and h, equation (57) then implies that (66) m1=f(M1,M3),M1=f(m1,m3)m2=g(M1,M2),M2=g(m1,m2)m3=h(M2,M3),M3=h(m2,m3).(66) By assumption (b) one gets (67) m1=M1=x¯m2=M2=y¯m3=M3=z¯.(67)

Theorem 3.3:

If (68) β22β23β24<γ22γ23γ24,(68) then Γ2=(x¯,y¯,z¯))[L22,U22]×[L23,U23×L24,U24]  is the unique +ve equilibrium and +ve solution of (4) tends to Γ2 of (4) as n.

Proof:

From (4), we have (69) f(x,z)=α22+β22ezγ22+x,g(x,y)=α23+β23exγ23+y,h(y,z)=α24+β24eyγ24+z.(69) It is clear that f,g and h satisfies the hypothesis of Lemma 3.1 and let m1,m2,m3,M1,M2,M3 be positive numbers such that (70) m1=α22+β22eM3γ22+M1,M1=α22+β22em3γ22+m1m2=α23+β23eM1γ23+M2,M2=α23+β23em1γ23+m2m3=α24+β24eM2γ24+M3,M3=α24+β24em2γ24+m3.(70) From (70) one gets (71) eM3=m1(γ22+M1)α22β22,em3=M1(γ22+m1)α22β22eM1=m2(γ23+M2)α23β23,em1=M2(γ23+m2)α23β23eM2=m3(γ24+M3)α24β24,em2=M3(γ24+m3)α24β24,(71) which implies that (72) m1M1=β22γ22(eM3em3)=β22γ22eM3m3(em3eM3)m2M2=β23γ23(eM1em1)=β23γ23eM1m1(em1eM1)m3M3=β24γ24(eM2em2)=β24γ24eM2m2(em2eM2).(72) Moreover (73) em3eM3=eζ(m3M3),min{m3,M3}ζmax{m3,M3}em1eM1=eθ(m1M1),min{m1,M1}θmax{m1,M1}em2eM2=eη(m2M2),min{m2,M2}ηmax{m2,M2}.(73) In view of (73), equation (72) then implies that (74) m1M1=β22γ22eM3m3+ζ(m3M3)m2M2=β23γ23eM1m1+θ(m1M1)m3M3=β24γ24eM2m2+η(m2M2).(74) And so (75) |m1M1|β22γ22|m3M3||m2M2|β23γ23|m1M1||m3M3|β24γ24|m2M2|.(75) In addition from (68) and (75) one gets (76) 1β22β23β24γ22γ23γ24|m1M1|01β22β23β24γ22γ23γ24|m2M2|01β22β23β24γ22γ23γ24|m3M3|0.(76) From which one can see that m1=M1,m2=M2 and m3=M3. Therefore from (50) and (51) and statement (b) of Lemma 3.1, (4) has a unique +ve equilibrium point Γ2 and every +ve solution of (4) tends to Γ2 as n.

Theorem 3.4:

Assume that (68) hold and if (77) α22+β22eL24(γ22+L22)21+α23+β23eL22(γ23+L23)2+α23+β23eL22(γ23+L23)2×1+α24+β24eL23(γ24+L24)2+α24+β24eL23(γ24+L24)2×1+α22+β22eL24(γ22+L22)2+1(γ22+L22)(γ23+L23)(γ24+L24)×β22β23β24eL22L23L24+(α22+β22eL24)(α23+β23eL22)(α24+β24eL23)(γ22+L22)(γ23+L23)(γ24+L24)<1,(77) then Γ2 of (4) is globally asymptotically stable.

Proof:

Jacobian matrix JΓ2 about Γ2 is (78) JΓ2=0A100A20100000B100B20000100000C100C2000010,(78) where (79) A1=α22+β22ez¯(γ22+x¯)2,A2=β22ez¯γ22+x¯B1=β23ex¯γ23+y¯,B2=α23+β23ex¯(γ23+y¯)2C1=β24ey¯γ24+z¯,C2=α24+β24ey¯(γ24+z¯)2.(79) Moreover the Characteristic equation of JΓ2 about Γ2 is (80) λ6+μ1λ4+μ2λ3+μ3λ2+μ4=0,(80) where (81) μ1=(A1+B2+C2)μ2=A2B1C1μ3=A1B2+A1C2+B2C2μ4=A1B2C2.(81) Now (82) i=14|μi|=α22+β22ez¯(γ22+x¯)2+α23+β23ex¯(γ23+y¯)2+α24+β24ey¯(γ24+z¯)2+β22β23β24ex¯y¯z¯(γ22+x¯)(γ23+y¯)(γ24+z¯)+(α22+β22ez¯)(α23+β23ex¯)(γ22+x¯)2(γ23+y¯)2+(α22+β22ez¯)(α24+β24ey¯)(γ22+x¯)2(γ24+z¯)2+(α23+β23ex¯)(α24+β24ey¯)(γ23+y¯)2(γ24+z¯)2+(α22+β22ez¯)(α23+β23ex¯)(α24+β24ey¯)(γ22+x¯)2(γ23+y¯)2(γ24+z¯)2,α22+β22eL24(γ22+L22)2+α23+β23eL22(γ23+L23)2+α24+β24eL23(γ24+L24)2+β22β23β24eL22L23L24(γ22+L22)(γ23+L23)(γ24+L24)+(α22+β22eL24)(α23+β23eL22)(γ22+L22)2(γ23+L23)2+(α22+β22eL24)(α24+β24eL23)(γ22+L22)2(γ24+L24)2+(α23+β23eL22)(α24+β24eL23)(γ23+L23)2(γ24+L24)2+(α22+β22eL24)(α23+β23eL22)(α24+β24eL23(γ22+L22)2(γ23+L23)2(γ24+L24)2,=α22+β22eL24(γ22+L22)21+α23+β23eL22(γ23+L23)2+α23+β23eL22(γ23+L23)21+α24+β24eL23(γ24+L24)2+α24+β24eL23(γ24+L24)21+α22+β22eL24(γ22+L22)2+1(γ22+L22)(γ23+L23)(γ24+L24)β22β23β24eL22L23L24+(α22+β22eL24)(α23+β23eL22)(α24+β24eL23)(γ22+L22)(γ23+L23)(γ24+L24).(82) Assuming condition (77) holds then from (82) one get i=14|μi|<1 and hence Theorem 1.5 of [Citation5] implies that Γ2 of (4) is locally asymptotically stable. Moreover by Theorem 3.3, one can see that Γ2 of (4) is globally asymptotically stable.

3.4. Rate of convergence

Theorem 3.5:

If {(xn,yn,zn)}n=1 is a +ve solution of (4) such that (37) along with following relation hold: (83) x¯[L22,U22]y¯[L23,U23]z¯[L24,U24].(83) Then en=(en22,en122,en23,en123,en24,en124)T of every +ve solution of (4) satisfying (84) limn(en)1n=|λ1,2,3,4,5,6JΓ2|limnen+1en=|λ1,2,3,4,5,6JΓ2|,(84) where |λ1,2,3,4,5,6JΓ2| are Characteristic root of JΓ2.

Proof:

If {(xn,yn,zn)}n=1 is a +ve solution of (4), s.t., (37) along with (83) hold. For error terms, one has (85) xn+1x¯=α22+β22eznγ22+xn1 α22+β22ez¯γ22+x¯=β22(eznez¯)(γ22+xn1)(znz¯)(znz¯)α22+β22ez¯(γ22+xn1)(γ22+x¯)(xn1x¯)yn+1y¯=α23+β23exnγ23+yn1 α23+β23ex¯γ23+y¯=β23(exnex¯)(γ23+yn1)(xnx¯)(xnx¯)α23+β23ex¯(γ23+yn1)(γ23+y¯)(yn1y¯)zn+1z¯=α24+β24eynγ24+zn1 α24+β24ey¯γ24+z¯=β24(eyney¯)(γ24+zn1)(yny¯)(yny¯)α24+β24ey¯(γ24+zn1)(γ24+z¯)(zn1z¯),(85) that is (86) xn+1x¯=β22(eznez¯)(γ22+xn1)(znz¯)(znz¯)α22+β22ez¯(γ22+xn1)(γ22+x¯)(xn1x¯)yn+1y¯=β23(exnex¯)(γ23+yn1)(xnx¯)(xnx¯)α23+β23ex¯(γ23+yn1)(γ23+y¯)(yn1y¯)zn+1z¯=β24(eyney¯)(γ24+zn1)(yny¯)(yny¯)α24+β24ey¯(γ24+zn1)(γ24+z¯)(zn1z¯).(86) Set (87) en22=xnx¯en23=yny¯en24=znz¯.(87) By (87), (86) gives (88) en+122=anen122+bnen24en+123=cnen22+dnen123en+124=enen23+fnen124,(88) where (89) an=α22+β22ez¯(γ22+xn1)(γ22+x¯)bn=β22(eznez¯)(γ22+xn1)(znz¯)cn=β23(exnex¯)(γ23+yn1)(xnx¯)dn=α23+β23ex¯(γ23+yn1)(γ23+y¯)en=β24(eyney¯)(γ24+zn1)(yny¯)fn=α24+β24ey¯(γ24+zn1)(γ24+z¯).(89) Taking the limits of an,bn,cn,dn,en and fn one gets (90) limnan=α22+β22ez¯(γ22+x¯)2,limnbn=β22ez¯γ22+x¯limncn=β23ex¯γ23+y¯,limndn=α23+β23ex¯(γ23+y¯)2limnen=β24ey¯γ24+z¯,limnfn=α24+β24ey¯(γ24+z¯)2,(90) that is (91) an=α22+β22ez¯(γ22+x¯)2+α22n1,bn=β22ez¯γ22+x¯+α24n,cn=β23ex¯γ23+y¯+α22ndn=α23+β23ex¯(γ23+y¯)2+α23n1,en=β24ey¯γ24+z¯+α23n,fn=α24+β24ey¯(γ24+z¯)2+α24n1,(91) where α22n,α22n1,α23n,α23n1,α24n,α24n10 as n. Now we have system (1.10) of [Citation7], where (92) A=0α22+β22ez¯(γ22+x¯)20100β23ex¯γ23+y¯0000100β24ey¯γ24+z¯0000β22ez¯γ22+x¯0000α23+β23ex¯(γ23+y¯)20000000α24+β24ey¯(γ24+z¯)2010,(92) and (93) B(n)=0α22n1001000α22n00α23n1001000α23n00000α24n00000000α24n110,(93) and B(n)0, n. Thus error terms about Γ2 similar to Linearized system of (4) is (94) en+122en22en+123en23en+124en24=0α22+β22ez¯(γ22+x¯)20100β23ex¯γ23+y¯0000100β24ey¯γ24+z¯0000β22ez¯γ22+x¯0000α23+β23ex¯(γ23+y¯)20000000α24+β24ey¯(γ24+z¯)2010en22en122en23en123en24en124.(94)

4. Numerical simulations

Here we will verify theoretical results obtain in Section 2–3 numerically. If α19=45,β19=4,γ19=7.0,α20=39,β20=3,γ20=4,α21=59,β21=2,γ21=4 then (3) with x0=0.2,x1=0.7,y0=0.4,y1=1.9,z0=0.4,z1=0.9 can be written as (95) xn+1=45+4eyn7.0+zn1,yn+1=39+3ezn4+xn1,zn+1=59+2exn48+yn1.(95)

From computations it is easy to confirm that for above chosen values of parameters α19=45,β19=4,γ19=7.0,α20=39,β20=3,γ20=4,α21=59,β21=2,γ21=4 conditions under which Γ1 is globally asymptotically stable hold, i.e. β19β20β21=24<γ19γ20γ21=112and1γ19+L21β19eL20(α20+β20eL21)(γ20+L19)2+β21eL19(α19+β19eL20)(γ19+L21)(γ21+L20)+β20eL21(α21+β21eL19)(γ20+L19)(γ21+L20)2+1(γ19+L21)(γ20+L19)(γ21+L20). β19β20β21eL19L20L21+(α19+β19eL20)(α20+β20eL21)(α21+β21eL19)(γ19+L21)(γ20+L19)(γ21+L20)=0.0909986005619405595473877796<1.

Moreover, plot of n vs xn,n vs yn,n vs zn and its Global attractor is shown in Figure (a–d), respectively. Now if α19=45,β19=4,γ19=27,α20=39,β20=3,γ20=14,α21=59,β21=2,γ21=4 then (3) with x0=0.002,x1=0.07,y0=0.004,y1=1.9,z0=4,z1=0.9 can be written as (96) xn+1=45+4eyn27+zn1,yn+1=39+3ezn14+xn1,zn+1=59+2exn4+yn1.(96) Computations show that if α19=45,β19=4,γ19=27,α20=39,β20=3,γ20=14,α21=59,β21=2,γ21=4 then conditions under which Γ1 is globally asymptotically stable hold, i.e. β19β20β21=24<γ19γ20γ21=1512and1γ19+L21×β19eL20(α20+β20eL21)(γ20+L19)2+β21eL19(α19+β19eL20)(γ19+L21)(γ21+L20)+β20eL21(α21+β21eL19)(γ20+L19)(γ21+L20)2+1(γ19+L21)(γ20+L19)(γ21+L20). β19β20β21eL19L20L21+(α19+β19eL20)(α20+β20eL21)(α21+β21eL19)(γ19+L21)(γ20+L19)(γ21+L20)=0.0856704522853635631846346627<1.

Figure 1. Graph for (95).

Figure 1. Graph for (95).

Moreover, plot of n vs xn,n vs yn,n vs zn and Global attractor is shown in Figure (a–d), respectively. For system (4), if we choose α22=315,β22=1.4,γ22=1.7,α23=222,β23=123,γ23=124,α24=222,β24=112,γ24=114 with x0=0.2,x1=0.1,y0=0.4,y1=0.29,z0=2,z1=0.9 can be written as (97) xn+1=315+1.4ezn1.7+xn1,yn+1=222+123exn124+yn1,zn+1=222+1129eyn114+zn1.(97) For these values α22=315,β22=1.4,γ22=1.7,α23=222,β23=123,γ23=124,α24=222,β24=112,γ24=114 the conditions under which Γ2 is globally asymptotically stable satisfied, i.e. β22β23β24=19286.399999999998<γ22γ23γ24=24031.199999999997 and α22+β22eL24(γ22+L22)21+α23+β23eL22(γ23+L23)2+α23+β23eL22(γ23+L23)21+α24+β24eL23(γ24+L24)2+α24+β24eL23(γ24+L24)21+α22+β22eL24(γ22+L22)2+1(γ22+L22)(γ23+L23)(γ24+L24). β22β23β24eL22L23L24+(α22+β22eL24)(α23+β23eL22)(α24+β24eL23)(γ22+L22)(γ23+L23)(γ24+L24)=0.2351437011808576519431082194520031<1.Moreover, plot of n vs xn,n vs yn,n vs zn and its attractor is shown in Figure (a–d), respectively.

Figure 2. Graph for (96).

Figure 2. Graph for (96).

Figure 3. Graph for (97).

Figure 3. Graph for (97).

5. Conclusions

We have explored the global properties of exponential systems of difference equations. For both systems, we have studied the dynamics including boundedness and persistence, existence of invariant rectangle, existence of the unique +ve equilibrium, global and local dynamics about the unique +ve equilibrium point and conclusion are presented in Tables . Furthermore rate of convergence for each system is also demonstrated. Finally, theoretical results are verified numerically.

Table 2. Existence of invariant rectangle corresponding to system (3) and (4).

Table 3. Existence of the uniqueness +ve equilibrium of system (3) and (4).

Table 4. Existence of parametric conditions under which the +ve equilibrium of system (3) and (4) is globally asymptotically stable.

Acknowledgement

The author declares that he got no funding on any part of this research.

Disclosure statement

No potential conflict of interest was reported by the author.

References

  • Ozturk I, Bozkurt F, Ozen S. On the difference equation: xn+1=(α1+α2e−xn)/α3+xn−1. Appl Math Comput. 2006;181:1387–1393.
  • Papaschinopoulos G, Radin MA, Schinas CJ. Study of the asymptotic behavior of the solutions of three systems of difference equations of exponential form. Appl Math Comput. 2012;218:5310–5318.
  • Grove EA, Ladas G. Periodicities in nonlinear difference equations. Boca Raton, FL: CRC Press; 2004.
  • Kulenovic MRS, Ladas G. Dynamics of second-order rational difference equations. Boca Raton, FL: CRC Press; 2002.
  • Sedaghat H. Nonlinear difference equations: theory with applications to social science models. Dordrecht: Kluwer Academic; 2003.
  • Kalabusic S, Kulenovic MRS. Rate of convergence of solutions of rational difference equations of second-order. Adv Diff Eq. 2004;2:121–139.
  • Pituk M. More on Poincare’s and Perron’s theorems for difference equations. J Diff Eq Appl. 2002;8:201–216.