629
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

On the existence of an almost generalized weakly-symmetric Sasakian manifold admitting quarter symmetric metric connection

ORCID Icon, ORCID Icon & ORCID Icon
Pages 941-946 | Received 30 Dec 2018, Accepted 19 Aug 2019, Published online: 10 Sep 2019

Abstract

The object of the present work is to study an almost generalized weakly symmetric Sasakian manifold admitting quarter symmetric metric connection with a non-trivial example.

Mathematics Subject Classification 2010:

1. Introduction

The notion of a weakly symmetric Riemannian manifold was initiated by Tamássy and Binh [Citation1]. Thereafter, it becomes focus of interest for many geometers. For details, we refer to [Citation2–13] and the references there in.  In analogy to [Citation14], a weakly symmetric Riemannian manifold (Mn,g)(n>2), is said to be an almost weakly pseudo symmetric manifold, if its curvature tensor R¯ of type (0,4) is not identically zero and satisfies the identity (1) (XR¯)(Y,U,V, W)=[A1(X)+B1(X)]R¯(Y,U,V, W)+C1(Y)R¯(X,U,V, W)+C1(U)R¯(Y,X,V, W)+D1(V)R¯(Y,U,X, W)+D1(W)R¯(Y,U,V, X),(1) where A1, B1, C1 & D1 are non-zero 1-forms defined by A1(X )=g(X,σ1), B1(X)=g(X,ϱ1), C1(X)=g(X,π1) and D1(X)=g(X,1), for all X and R¯(Y,U,V, W)=g(R(Y,U)V, W), ∇ being the operator of the covariant differentiation with respect to the metric tensor g. An n-dimensional Riemannian manifold of this kind is denoted by A(WPS)n-manifold.

Keeping in tune with Dubey [Citation15], the author  in [Citation16] has recently introduced the notion of an almost generalized weakly symmetric manifold (which is  abbreviated hereafter as A(GWS)n-manifold) if it admits the equation (2) (XR¯)(Y,U,V, W)=[A1(X)+B1(X)]R¯(Y,U,V, W)+C1(Y)R¯(X,U,V, W)+C1(U)R¯(Y,X,V, W)+D1(V)R¯(Y,U,X, W)+D1(W)R¯(Y,U,V, X)+[A2(X)+B2(X)]G¯(Y,U,V, W)+C2(Y)G¯(X,U,V, W)+C2(U) G¯(Y,X,V, W)+D2(V) G¯(Y,U,X, W)+D2(W) G¯(Y,U,V,X )(2) where (3) G¯(Y,U,V, W)=g(U,V)g(Y, W)g(Y, V)g(U, W)(3) and Ai, Bi, Ci & Di are non-zero 1-forms defined by Ai(X )=g(X,σi), Bi(X)=g(X,ϱi), Ci(X)=g(X,πi) and Di(X)=g(X,i), for i=1,2. The beauty of such A(GWS)n-manifold is that it has the flavour of

  1. locally symmetric space [Citation17], (for Ai=Bi=Ci=Di=0),

  2. recurrent space [Citation18], Rn (for A10, Bi=Ci=Di=0),

  3. generalized recurrent space [Citation15], (GR)n (Ai0 and  Bi=Ci=Di=0),

  4. pseudo symmetric space [Citation19], (PS)n (for A1=B1=C1=D10 and A2=B2=C2=D2=0),

  5. semi-pseudo symmetric space [Citation20], (SPS)n (for A1=B1,C1=D1 and A2=B2=C2=D2=0),

  6. generalized semi-pseudo symmetric space [Citation21], (GSPS)n (for A1=B1,C1=D1 and A2=B2,C2=D2),

  7. generalized pseudo symmetric space [Citation22], (GPS)n (for Ai=Bi=Ci=Di0),

  8. almost pseudo symmetric space [Citation14], A(PS)n (for B10, A1=C1=D10 and A2=B2=C2=D2=0),

  9. almost generalized pseudo symmetric space [Citation16],  A(GPS)n (for Bi0, Ai=Ci=Di0) and

  10. weakly symmetric space [Citation1], (WS)n ( for A2=B2=C2=D2=0).

In [Citation23], Golab defined and studied quarter-symmetric connection in a differentiable manifold with affine connection, which generalizes the thought of semi-symmetric connection. After Golab quarter symmetric connection has been studied by many geometers like as Mondal and De [Citation24], Rastogi [Citation25, Citation26], Mishra and Pandey [Citation27], Yano and Imai [Citation28] and others. A linear connection ¯ on an n-dimensional Riemannian manifold (M, g) is called a quarter-symmetric connection [Citation23] if its torsion tensor T of the connection ¯ T(X,Y)=¯XY¯YX[X,Y] satisfies T(X,Y)=η(Y)φXη(X)φY, where η is a 1-form and φ is a (1, 1) tensor field.

In particular, if φX = X, then the quarter-symmetric connection reduces to the semi-symmetric connection [Citation29, Citation30]. Thus the notion of quarter-symmetric connection generalizes that of the semi-symmetric connection.

Furthermore, if a quarter-symmetric connection ¯ admits the condition (¯Xg)(Y,Z)=0 then ¯ is said to be a quarter-symmetric metric connection, otherwise it is said to be a quarter-symmetric non-metric connection [Citation31].

Our work is structured as follows. Section 2 is concerned with Sasakian manifolds and some known results. In Section 3, we have investigated almost generalized weakly symmetric Sasakian manifolds admitting a quarter-symmetric metric connection ¯,  which will be abbreviated by [A(GPS)n,¯]. It is observed that in a Sasakian manifold a necessary condition (i) for each of [Rn,¯], [(GR)n,¯], [(PS)n,¯] and [(GPS)n,¯] to be, respectively, [Rn,], [(GR)n,], [(PS)n,] and [(GPS)n,] is A1(ξ)=0; (ii) for each of [(SPS)n,¯] and [(GSPS)n,¯] to be , respectively, [(SPS)n,] and [(GSPS)n,] is C1(ξ)=0 & (iii) for [(WS)n,¯] to be [(WS)n,] is A1(ξ)+ C1(ξ)+D1(ξ)=0. Finally, we have constructed a non-trivial example of an [A(GPS)n,¯].

2. Sasakian manifold and some known results

Let M be an n=(2m+1)-dimensional almost contact metric manifold equipped with an almost contact metric structure (φ, ξ, η, g) consisting of a (1, 1) tensor field φ, a vector field ξ, a 1-form η and a Riemannian metric g. Then (4) φ2(X)=X+η(X)ξ, η(ξ)=1,φξ=0, η(φX)=0,(4) (5) g(φX,φY)=g(X,Y)η(X)η(Y),X,YTM.(5) From (Equation4) and (Equation5), it can be easily seen that (6) g(X,φY)=g(φX,Y),g(X,ξ)=η(X),X,YTM.(6) An almost contact metric manifold M is said to be (a) a contact metric manifold if (7) g(X,φY)=dη(X,Y),X,YTM;(7) (b) a K-contact manifold if the vector field ξ is Killing equivalently (8) Xξ=φX,(8) where ∇ is Riemannian connection and

(c) a Sasakian manifold if (9) (Xφ)Y=g(X,Y)ξη(Y)X,X,YTM.(9) A K-contact manifold is a contact metric manifold, while the converse is true if the Lie derivative of φ in the characteristic direction ξ vanishes identically. A Sasakian manifold is always a K-contact manifold. A 3-dimensional K-contact manifold is a Sasakian manifold.

It is well known that a contact metric manifold is Sasakian if and only if (10) R(X,Y)ξ=η(Y)Xη(X)Y,X,YTM.(10) In a Sasakian manifold equipped with the structure (φ, ξ, η, g), the following relations also hold [Citation32–34]: (11) (Xη)Y=g(X,φY),(11) (12) R(ξ,X)Y=g(X,Y)ξη(Y)X,(12) (13) S(X,ξ)=(n1)η(X),(13) (14) R(X,ξ)Y=η(Y)Xg(X,Y)ξ,(14) for all X,Y,ZTM, where S is the Ricci tensor.

The relation between the quarter-symmetric metric connection ¯ and the Levi-Civita connection ∇ of (Mn,g) has been obtained by Yano and Imai [Citation28], which is given by (15) ~XY=XYη(Y)φX;(15) given by.

A relation between the curvature tensor Rof M with respect to the quarter-symmetric metric connection ¯ and R of M with respect to the the Riemannian connection ∇, is given by (16) R(X,Y)Z=R(X,Y)Z2g(X,φY)φZ+η(X)g(Y,Z)ξη(Y)g(X,Z)ξ+η(Z){η(Y)Xη(X)Y}.(16) which yields (17) S(Y,Z)=S(Y,Z)g(Y,Z)+nη(Y)η(Z),(17) where S and S are the Ricci tensors of the connections ¯ and ∇ , respectively.

3. Sasakian manifold with [A(GPS)n,¯]

For an [A(GPS)n,¯], we have (18) (XR¯)(Y,U,V, W)=[A1(X)+B1(X)]R¯(Y,U,V, W)+C1(Y)R¯(X,U,V, W)+C1(U)R¯(Y,X,V, W)+D1(V)R¯(Y,U,X, W)+D1(W)R¯(Y,U,V, X)[A2(X)+B2(X)]G(Y,U,V, W)+C2(Y)G(X,U,V, W)+C2(U)G(Y,X,V, W)+D2(V)G(Y,U,X, W)+D2(W)G(Y,U,V, X)(18) for all X, Y, Z, U. Making use of (Equation15), we can find (19) (~XR~)(Y,U,V, W)=(XR~)(Y,U,V, W)η(R~(Y,U)V)g(φX,W)+η(Y)R~(φX,U,V,W)+η(U)R~(Y,φX,V,W)+η(V)R~(Y,U,φX,W)+η(W)R~(Y,U,V,φX).(19) Now, using (Equation16) in the foregoing equation, we have (20) (~XR~)(Y,U,V, W)=(XR¯)(Y,U,V, W)2(Xg)(Y,φU)g(φV,W)2g(Y,φU)(Xg)(φV,W)+(Xη)(Y)g(U,V)η(W)+η(Y)g(U,V)(Xη)(W)(Xη)(U)g(Y,V)η(W)η(U)g(Y,V)(Xη)(W)+(Xη)(V){g(Y,W)η(U)g(U,W)η(Y)}+η(V){g(Y,W)(Xη)(U)g(U,W)(Xη)(Y)}[η(R(Y,U)V)+g(U,V)η(Y)g(Y,V)η(U)]g(φX,W)+η(Y)[R(φX,U,V,W)2g(φX,φU)g(φV,W)g(φX,V)η(U)η(W)+g(φX,W)η(U)η(V)]+η(U)[R(Y,φX,V,W)+2g(φY,φX)g(φV,W)+g(φX,V)η(Y)η(W)g(φX,W)η(Y)η(V)]+η(V)[R(Y,U,φX,W)+2g(Y,φU)g(φX,φW)+g(φX,U)η(Y)η(W)g(φX,Y)η(U)η(W)]+η(W)[R(Y,U,V,φX)2g(Y,φU)g(φV,φX)+g(Y,φX)η(U)η(V)g(φX,U)η(Y)η(V)].(20)

Theorem 3.1

An [A(GPS)n,¯]  is an [A(GPS)n,], if the 1-forms are related by the following relation (21) A1(ξ)+B1(ξ)+C1(ξ)+D1(ξ)=0.(21)

Proof.

As a direct consequence of (Equation16), (Equation18) and (Equation20) one can say that an almost generalized weakly symmetric Sasakian manifold admitting quarter symmetric connection ¯ reduces to an almost generalized weakly symmetric Sasakian manifold admitting Riemannian metric connection ∇, if the following relation holds (22) 2(Xg)(Y,φU)g(φV,W)2g(Y,φU)(Xg)(φV,W)+(Xη)(Y)g(U,V)η(W)+η(Y)g(U,V)(Xη)(W)(Xη)(U)g(Y,V)η(W)η(U)g(Y,V)(Xη)(W)+(Xη)(V){g(Y,W)η(U)g(U,W)η(Y)}+η(V){g(Y,W)(Xη)(U)g(U,W)(Xη)(Y)}[η(R(Y,U)V)+g(U,V)η(Y)g(Y,V)η(U)]g(φX,W)+η(Y)[R(φX,U,V,W)2g(φX,φU)g(φV,W)g(φX,V)η(U)η(W)+g(φX,W)η(U)η(V)]+η(U)[R(Y,φX,V,W)+2g(φY,φX)g(φV,W)+g(φX,V)η(Y)η(W)g(φX,W)η(Y)η(V)]+η(V)[R(Y,U,φX,W)+2g(Y,φU)g(φX,φW)+g(φX,U)η(Y)η(W)g(φX,Y)η(U)η(W)]+η(W)[R(Y,U,V,φX)2g(Y,φU)g(φV,φX)+g(Y,φX)η(U)η(V)g(φX,U)η(Y)η(V)]+[A1(X)+B1(X)]×[2g(Y,φU)g(φV,W)g(U,V)η(Y)η(W)+g(Y,V)η(U)η(W){g(Y,W)η(U)g(U,W)η(Y )}η(V)]+C1(Y)[2g(X,φU)g(φV,W)g(U,V)η(X)η(W)+g(X,V)η(U)η(W){g(X,W)η(U)g(U,W)η(X )}η(V)]+C1(U)[2g(Y,φX)g(φV,W)g(X,V)η(Y)η(W)+g(Y,V)η(X)η(W){g(Y,W)η(X)g(X,W)η(Y )}η(V)]+D1(V)[2g(Y,φU)g(φX,W)g(U,X)η(Y)η(W)+g(Y,X)η(U)η(W){g(Y,W)η(U)g(U,W)η(Y )}η(X)]+D1(W)[2g(Y,φU)g(φV,X)g(U,V)η(Y)η(X)+g(Y,V)η(U)η(X){g(Y,X)η(U)g(U,X)η(Y )}η(V)]=0(22) which yields A1(ξ)+B1(ξ)+C1(ξ)+D1(ξ)=0 for X=U=V=ξ.

From, the above one can state the followings

Claim 3.2

In a Sasakian manifold, a necessary condition for each of [Rn,¯], [(GR)n,¯], [(PS)n,¯] and [(GPS)n,¯] to be [Rn,], [(GR)n,], [(PS)n,] and [(GPS)n,] is A1(ξ)=0.

Claim 3.3

In a Sasakian manifold, a necessary condition for each of [(SPS)n,¯] and [(GSPS)n,¯], to be [(SPS)n,] and [(GSPS)n,] is C1(ξ)=0.

Claim 3.4

In a Sasakian manifold, a necessary condition for [(WS)n,¯] to be [(WS)n,] is A1(ξ)+ C1(ξ)+D1(ξ)=0.

Again, contracting Equation (Equation18), we have (23) (¯XS)(U,V)=[A1(X)+B1(X)]S(U,V)+C1(R(X,U)V)+C1(U)S(X,V)+D1(V)S(U,X)D1(R(V, X)U)+[A2(X)+B2(X)](n1)g(U,V)+[C2(X)g(U,V)C2(U)g(V, X)]+(n1)C2(U)g(X,V)+(n1)D2(V)g(U,X)+[D2(X)g(U,V)D2(V)g(U, X)].(23) Replacing V by ξ in the above equation and then using the relations (Equation16), (Equation17), (Equation10), (Equation13) and (Equation14),  we get (24) 0=2(n1)[A1(X)+B1(X)]+2[C1(X)+D1(X)]+2(n2)[C1(ξ)+D1(ξ)]η(X)+(n1)[A2(X)+B2(X)]+C2(X)+D2(X)+(n2)[C2(ξ)+D2(ξ)]η(X).(24)

Thus we can state the followings

Theorem 3.5

In a [(AGPS)n,¯],  the 1-forms are related by (Equation24).

4. Example of a Sasakian manifold with [A(GPS)n,¯]

Chose a 3-dimensional manifold spanned by a set of vector fields {e1,e2,e3} defined by e1=x1x1+x22x2x3, e2=x2,e3=ξ=x3, where {x1;x2;x3} is a standard coordinates in R3. Define 1-form η, characteristic vector field ξ, Riemannian metric g and (1-1) tensor φ by η(Z)=g(Z,e3), ξ=x3, g(ei,ej)=δij and φe1=e2, φe2=e1and φe3=0. Let ∇be the Levi-Civita connection with respect to the Riemannian metric g. Then we have [e1,e2]=2e3, [e1,e3]=0, [e2,e3]=0. Thus, M(φ, ξ, η, g) defines a Sasakian manifold.

The Levi-Civita connection ∇ of the metric tensor g can be obtained by using Koszul's formula which are as follows: e1e3=e2,e1e2=e3,e1e1=0,e2e3=e1,e2e2=0,e2e1=e3,e3e3=0,e3e2=e1,e3e1=e2.

In view of the above, one can easily obtain the following: ¯e1e3=0,¯e1e2=e3,¯e1e1=0,¯e2e3=0,¯e2e2=0,¯e2e1=e3,¯e3e3=0,¯e3e2=e1,¯e3e1=e2. By virtue of the above results, we can easily obtain the non-vanishing components of the curvature tensors as follows: R(e1,e2)e2=3e1, R(e1,e3)e3=e1, R(e2,e3)e3=e2; and R~(e1,e2)e2=5e1,R~ (e1,e3)e3=2e1,R~(e2,e3)e3=2e2. Since {e1,e2,e3} forms a basis of the Sasakian manifold, any vector field Y, U, V, W χ(M) can be written as Y=a1e1+b1e2+c1e3;U=a2e1+b2e2+c2e3;V=a3e1+b3e2+c3e3W=a4e1+b4e2+c4e3; where ai,bi,ciR+ (the set of all positive real numbers). Then G¯(Y,U,V,W)=(a2a3+b2b3+c2c3)×(a1a4+b1b4+c1c4)(a1a3+b1b3+c1c3)×(a2a4+b2b4+c2c4)=θ(say)G¯(e1,U,V,W)=a4(a2a3+b2b3+c2c3)a3(a2a4+b2b4+c2c4)=θ1(say)G¯(e2,U,V,W)=b4(a2a3+b2b3+c2c3)b3(a2a4+b2b4+c2c4)=θ2(say)G¯(e3,U,V,W)=c4(a2a3+b2b3+c2c3)c3(a2a4+b2b4+c2c4)=θ3(say)G¯(Y,e1,V,W)=a3(a1a4+b1b4+c1c4)a4(a1a3+b1b3+c1c3)=θ4(say)G¯(Y,e2,V,W)=b3(a1a4+b1b4+c1c4)b4(a1a3+b1b3+c1c3)=θ5(say)G¯(Y,e3,V,W)=c3(a1a4+b1b4+c1c4)c4(a1a3+b1b3+c1c3)=θ6(say)G¯(Y,U,e1,W)=a2(a1a4+b1b4+c1c4)a1(a2a4+b2b4+c2c4)=θ7(say)G¯(Y,U,e2,W)=b2(a1a4+b1b4+c1c4)b1(a2a4+b2b4+c2c4)=θ8(say)G¯(Y,U,e3,W)=c2(a1a4+b1b4+c1c4)c1(a2a4+b2b4+c2c4)=θ9(say)G¯(Y,U,V,e1)=a1(a2a3+b2b3+c2c3)a1(a1a3+b1b3+c1c3)=θ10(say)G¯(Y,U,V,e2)=b1(a2a3+b2b3+c2c3)b1(a1a3+b1b3+c1c3)=θ11(say)G¯(Y,U,V,e3)=c1(a2a3+b2b3+c2c3)c1(a1a3+b1b3+c1c3)=θ12(say) R(Y,U,V,W)=5(a1b2a2b1)(a3b4a4b3)+2(a1c2a2c1)(a3c4a4c3)+2(b1c2b2c1)(b3c4b4c3)=λ(say)R(e1,U,V,W)=5b2(a3b4a4b3)+2c2(a3c4a4c3)=λ1(say)R(e2,U,V,W)=5a2(a3b4a4b3)+2c2(b3c4b4c3)=λ2(say)R(e3,U,V,W)=2c2(a3c4a4c3)2b2(b3c4b4c3)=λ3(say)R(Y,e1,V,W)=5b1(a3b4a4b3)2c1(a3c4a4c3)=λ4(say)R(Y,e2,V,W)=5a1(a3b4a4b3)+2c1(b3c4b4c3)=λ5(say)R(Y,e3,V,W)=2c1(a3c4a4c3)2b1(b3c4b4c3)=λ6(say)R(Y,U,e1,W)=5b4(a1b2a2b1)+2c4(a1c2a2c1)=λ7(say)R(Y,U,e2,W)=5a4(a1b2a2b1)+2c4(b1c2b2c1)=λ8(say)R(Y,U,e3,W)=2c4(a1c2a2c1)2b4(b1c2b2c1)=λ9(say)R(Y,U,V,e1)=5b3(a1b2a2b1)+2c3(a1c2a2c1)=λ10(say)R(Y,U,V,e2)=5a3(a1b2a2b1)+2c3(b1c2b2c1)=λ11(say)R(Y,U,V,e3)=2c3(a1c2a2c1)2b3(b1c2b2c1)=λ12(say). Making use of the above results we obtain the covariant derivative as follows: (¯e1R)(Y,U,V,W)=[b1λ3+b2λ6+b3λ9+b4λ12](¯e2R)(Y,U,V,W)=[a1λ3+a2λ6+a3λ9+a4λ12](¯e2R)(Y,U,V,W)=[a1λ2+a2λ5+a3λ8+a4λ11][b1λ1+b2λ4+b3λ7+b4λ10] where R(Y,U,V,W)=g(R¯(Y,U)V,W). For the following choice of the one forms A1(e1)=b1λ3T1,B1(e1)= b2λ6T1,A2(e1)=b3λ9T2,B2(e1)=b4λ12 T2,A1(e2)=a1λ3T1,B1(e2)=a2λ6T1,A2(e2)= a3λ9T2,B2(e2)=a4λ12 T2,A1(e3)=a3λ8+a4λ11T1,B1(e3)=a1λ2+a2λ5T1,C1(e3)=1a3λ3+b3λ6 ,C2(e3)=1a3θ3+b3θ6 ,D1(e3)=1c3λ9+d3λ12 ,D2(e3)=1c3θ9+d3θ12 ,A2(e3)=b1λ1+b2λ4T2,B2(e3)=b3λ7+b4λ10T2, one can easily verify the relations (¯eiR)(X,Y,U,V)=[A1(ei)+B1(ei)]R(X,Y,U,V)+C1(X)R(ei,Y,U,V)+C1(Y)R(X,ei,U,V)+D1(U)R(X,Y,ei,V)+D1(V)R(X,Y,U,ei)+[A2(ei)+B2(ei)]G¯(X,Y,U,V)+C2(X)G¯(ei,Y,U,V)+C2(Y)G¯(X,ei,U,V)+D2(U)G¯(X,Y,ei,V)+D2(V)G¯(X,Y,U,ei) for 1,2,3. From the above, we can state that

Theorem 4.1

There exists a Sasakian manifold (M3,g) which is an [A(GPS)n,¯].

Disclosure statement

No potential conflict of interest was reported by the authors.

References

  • Tamássy L, Binh TQ. On weakly symmetric and weakly projective symmetric Riemannian manifolds. Coll Math Soc, J Bolyai. 1989;56:663–670.
  • Barman A. Weakly symmetric and weakly-Ricci symmetric LP-Sasakian manifolds admitting a quarter-symmetric metric connection. Novi Sad J Math. 2015;45(2):143–153.
  • De UC, Bandyopadhyay S. On weakly symmetric spaces. Acta Math Hungarica. 2000;83:205–212.
  • Hui SK, Shaikh AA, Roy I. On totally umbilical hypersurfaces of weakly conharmonically symmetric spaces. Indian J Pure Appl Math. 2010;10(4):28–31.
  • Jaiswal JP, Ojha RH. On weakly pseudo-projectively symmetric manifolds. Differ Geom Dyn Syst. 2010;12:83–94.
  • Jana SK, Shaikh AA. On quasi-conformally flat weakly Ricci symmetric manifolds. Acta Math Hungarica. 2007;115(3):197–214.
  • Malek F, Samawaki M. On weakly symmetric Riemannian manifolds. Differ Geom Dyn Syst. 2008;10:215–220.
  • Özen F, Altay S. On weakly and pseudo symmetric Riemannian spaces. Indian J Pure Appl Math. 2001;33(10):1477–1488.
  • Prvanovic M. On weakly symmetric Riemannian manifolds. Publ Math Debrecen. 1995;46:19–25.
  • Prvanovic M. On totally umbilical submanifolds immersed in a weakly symmetric Riemannian manifolds. Publ Math Debrecen. 1998;6:54–64.
  • Shaikh AA, Baishya KK. On weakly quasi-conformally symmetric manifolds. Soochow J Math. 2005;31(4):581–595.
  • Shaikh AA, Binh TQ. On weakly symmetric (LCS)n-manifolds. J Adv Math Stud. 2009;2:75–90.
  • Tamássy L, Binh TQ. On weak symmetric of Einstein and Sasakian manifolds. Tensor (N.S.). 1993;53:140–148.
  • Chaki MC, Kawaguchi T. On almost pseudo Ricci symmetric manifolds. Tensor. 2007;68(1):10–14.
  • Dubey RS. Generalized recurrent spaces. Indian J Pure Appl Math. 1979;10:1508–1513.
  • Baishya KK. On almost generalized pseudo symmetric manifolds, submitted.
  • Cartan E. Sur une classes remarquable d'espaces de Riemannian. Bull Soc Math France. 1926;54:214–264.
  • Walker AG. On Ruse's space of recurrent curvature. Proc London Math Soc. 1950;52:36–54.
  • Chaki MC. On pseudo Ricci symmetric manifolds. Bulg J Phys. 1988;15:526–531.
  • Tarafdar M, Musa AA, Jawarneh MA. Semi-pseudo Ricci symmetric manifold. J Indian Inst Sci. 1993;73:591–596.
  • Baishya KK. On generalized semi-pseudo symmetric manifold, submitted.
  • Baishya KK. On generalized pseudo symmetric manifold, submitted.
  • Golab S. On semi-symmetric and quarter-symmetric linear connections. Tensor(N.S.). 1975;29:249–254.
  • Mondal AK, De UC. Some properties of a quarter-symmetric metric connection on a Sasakian manifold. Bull Math Anal Appl. 2009;1:99–108.
  • Rastogi SC. On quarter-symmetric metric connection. C.R. Acad Sci Bulgaria. 1978;31:811–814.
  • Rastogi SC. On quarter-symmetric metric connection. Tensor (N.S.). 1987;44:133–141.
  • Mishra RS, Pandey SN. On quarter-symmetric metric F-connections. Tensor(N.S.). 1980;34:1–7.
  • Yano K, Imai T. Quarter-symmetric metric connections and their curvature tensors. Tensor (N.S.). 1982;38:13–18.
  • Friedmann A, Schouten JA. Uber die Geometrie der halbsymmetrischen Ubertragung. Math Zeitschr. 1924;21:211–223.
  • Hayden HA. Subspaces of a space with torsion. Proc London Math Soc. 1932;34:27–50.
  • Agashe NS, Chafle MR. A semi-symmetric non-metric connection on a Riemannian Manifold. Indian J Pure Appl Math. 1992;23:399–409.
  • Blair DE. Contact manifolds in Riemannian geometry, Lecture Notes in Math, Vol. 509 Springer, 1976.
  • Sasaki S. Lectures notes on almost contact manifolds, part I. Tohoku University; 1975.
  • Yano K, Kon M. Lectures notes on almost contact manifolds, part I. Tohoku University; 1994.