2,758
Views
16
CrossRef citations to date
0
Altmetric
Research Article

On system of nonlinear coupled differential equations and inclusions involving Caputo-type sequential derivatives of fractional order

, , ORCID Icon, & ORCID Icon
Pages 1-23 | Received 28 Jul 2021, Accepted 20 Nov 2021, Published online: 07 Feb 2022

Abstract

We investigate a new class of boundary value problems of a nonlinear coupled system of sequential fractional differential equations and inclusions involving Caputo fractional derivatives and boundary conditions. We use standard fixed-point theory tools to deduce sufficient criteria for the existence and uniqueness of solutions to the problems at hand. Examples are discussed to illustrate the validity of the proposed results.

2010 Mathematics Subject Classifications:

1. Introduction

Fractional calculus has gotten a lot of attention over the last two decades. Consequently, there has been a burgeoning interest in the theory and applications of fractional differential equations (FDEs) under various types of initial and boundary conditions (BCs); see, for example [Citation1–11] and the references cited therein. The feature of fractional differentiation and integration has significantly improved the consideration of mathematical modellings of many real-life problems within fractional settings. As a result, it has been realized that this subject has applications in a wide range of technical and physical sciences, including electrodynamics of complex media, control theory ecology, viscoelasticity, biomathematics, electrical circuits, electroanalytical chemistry, aerodynamics and blood flow phenomena. For additional information, the reader can consult the papers [Citation12–24].

In the remarkable monograph [Citation25], the concept of two fractional order operators (i.e. Sequential Fractional Derivative (SFD)) was discussed. It has been recognized that SFDs and non-SFDs are inextricably linked and thus there have appeared some recent work on sequential fractional differential equations (SFDEs) [Citation26–30]. Apart from the study of fractional-order boundary value problems (BVPs) for equations and inclusions [Citation31–33], the study of systems of coupled FDEs has accelerated and attracted interested researchers. Examples on applications of coupled systems include disease models, Lorenz system, ecological models, Duffing system, synchronization of chaotic systems, etc. [Citation34–38]. For the theoretical development of coupled systems of FDEs, we refer the readers to [Citation39–41] and the references cited therein. In [Citation42, Citation43], the authors investigated SFDEs with different types of BCs. Sufficient conditions are utilized to demonstrate the consequence of existence and uniqueness to the analysed equation. Numerous mathematicians and applied researchers have attempted to use fractional calculus to model real-world processes. It has been deduced in biology that the membranes of biological organism cells have fractional-order electrical conductance [Citation44] and thus are classified in groups of non-integer-order models. Fractional derivatives are the most successful in the field of rheology because they embody essential features of cell rheological behaviour [Citation45]. In most biological systems, such as HIV infection, hepatitis C virus (HCV) infection, and cancer spread, fractional-order ordinary differential equations are naturally related to systems with long-time memory. Additionally, they are related to fractals, which occur frequently in biological systems. Wang and Li [Citation46] analysed the global dynamics of HIV infection of CD4+ cells. Arafal et al. [Citation47] studied fractional modelling dynamics of HIV and CD4+ T cells during primary infection. As a result, fractional-order differential equations are thought to be a better tool than integer-order differential equations for describing hereditary properties of various materials and processes. Fractional-order models have become more realistic and practical than their classical integer-order counterparts as a result of this advantage, and their dynamics behaviour is also as stable as their integer-order counterparts. Due to the fact that theoretical results can aid in the development of a more complete understanding of the dynamic behaviour of biological processes, the study of abstract fractional dynamic models is becoming increasingly relevant and important in the modern era. On the other hand, the BCs in (Equation1) are referred to as coupled BCs; they are encountered in the study of reaction–diffusion equations, Sturm–Liouville problems and mathematical biology, among other fields [Citation48–50]. Recently in [Citation51], Ahmad et al. discussed the existence and uniqueness of coupled system of FDEs with a novel class of coupled boundary conditions specified by (1) {CDαu(t)=f(t,u(t),v(t)), tJ=[0,T],CDβv(t)=g(t,u(t),v(t)), tJ=[0,T],(u+v)(0)=(u+v)(T), ξη(uv)(s)ds=A.(1) where CDχ is the Caputo fractional derivatives (CFD) of order χ{α,β}, α,β(0,1], f,g:[0,T]×R2R are continuous functions and A is nonnegative constant. The main results are established by converting the system (Equation1) to a fixed point equivalent problem and solving it using standard fixed point theorems. As far as we know, the single-valued and multi-valued maps for the solutions of nonlinear coupled SFDEs with coupled boundary conditions have been rarely investigated. Motivated by the HIV infection model and its application background, we investigate the consequences of existence for a nonlinear coupled system of Caputo-type SFDEs subject to coupled boundary conditions of the form: (2) {(CDϱ+φCDϱ1)v(ι)=H1(ι,v(ι),w(ι)),ιS=[0,T],(CDς+φCDς1)w(ι)=H2(ι,v(ι),w(ι)),ιS=[0,T],(v+w)(0)=(v+w)(T),ϵδ(vw)(θ)dθ=ϕ,(2) where ϖ{ϱ,ς}, ϱ,ς(0,1], H1,H2:[0,T]×R2R, H1,H2:[0,T]×R2U(R) are continuous functions, U(R) is the collection of non-empty subsets of R, and ϕ is positive constant. Further existence investigation is carried out for the following nonlinear coupled differential inclusion (3) {(CDϱ+φCDϱ1)v(ι)H1(ι,v(ι),w(ι)),ιS=[0,T],(CDς+φCDς1)w(ι)H2(ι,v(ι),w(ι)),ιS=[0,T],(v+w)(0)=(v+w)(T),ϵδ(vw)(θ)dθ=ϕ,(3) under the same assumptions. Ahmad et al. [Citation51] reported the research to study the existence of positive solutions for nonlinear coupled system of fractional differential equations complemented with boundary conditions. We should point out that the term “sequential” is used in this context in the sense that the operator CDϑ+φCDϑ1 can be written as the composition of the operators CDϑ1(D+φ). In this article, authors have extend the boundary value problem of Ahmad et al. [Citation51] to nonlinear coupled system of sequential Caputo fractional differential equations and inclusions having the value of unknown functions v and w at the interval endpoints [0,T] being zero, whereas the impact of the sum of the unknown functions on an arbitrary domain (ϵ,δ) of the given interval [0,T] remaining constant. Furthermore, the authors have emphasized the major results on existence, uniqueness of solutions for sequential fractional differential equations and inclusions compared against [Citation51]. Unlike the paper [Citation51], the main results of this paper are entirely different in the sense that we consider the main problems in frame of sequential fractional derivative, use different techniques based on Schaefer's, Banach's, Covitz-Nadler's, and nonlinear alternative for Kakutani fixed point theorems and investigate the nonlinear coupled differential inclusion (Equation3) which was not considered in [Citation51]. Additionally, to our knowledge, there are no published outcomes relating system (Equation3). Section 2 provides essential preliminaries along with an auxiliary lemma that is critical for deriving the solution to the given problem. Section 3 is devoted to the main results in which we study the existence and uniqueness of solutions for systems (Equation2) and (Equation3), separately. In Section 4, particular examples consistent with the studied systems and the main theorems are provided.

2. Preliminaries

This section explores several definitions of multi-valued maps and lemmas that are necessary for proving the primary results [Citation13, Citation16, Citation52, Citation53].

Let (W,) be a normed space and that  Ucl(W)={MU(W):M is closed }, Uc,cp(W)={MU(W):M is convex and compact }.

A multi-valued map K:WU(W) is

  1. convex valued if K(s) is convex  sW;

  2. upper semi-continuous (u.s.c.) on W if, for each w0W; the set K(w0) is a non-empty closed subset of W and if, for each open set T of W containing K(w0), there exists an open neighbourhood T0 of w0 such that K(T0)T;

  3. lower semi-continuous (l.s.c.) if the set {mW:K(m)A} is open for any open set A in F;

  4. completely continuous (c.c) if K(A) is relatively compact (r.c) for every AUb(W)={MU(W):M is bounded}.

A map K:[c,d]Ucl(R) of multi-valued is said to be measurable if, for every mR, the function ιd(m,K(ι))=inf{|mk|:kK(ι)} is measurable.

A multi-valued map K:[c,d]×RU(R) is said to be Caratheodory if

  1. ιK(ι,s,m) is measurable for each s,mR;

  2. (s,m)K(ι,s,m) is u.s.c for almost all ι[c,d].

Further a Caratheodory function K is called L1-Caratheodory if

  1. for each ϵ>0, ∃ ψϵL1([c,d],R+) ∋ K(ι,s,m)=sup{|s|:sK(ι,s,m)ψϵ(ι)}  s,mR with s,mϵ and for a.e. ι[c,d].

Definition 2.1

The Riemann–Liouville fractional integral of order ϱ with the lower limit zero for a function f:[0,)R is defined as Iϱf(ι)=1Γ(ϱ)0ιf(θ)(ιθ)1ϱdθ,ι>0,ϱ>0,provided the RHS is point-wise defined on [0,), where Γ() is the gamma function, which is defined by Γ(ϱ)=0ιϱ1eιdι. Note that the above integral exists on [0,) when fC([0,),R).

Definition 2.2

The Riemann–Liouville fractional derivative of order ϱ>0, n1<ϱ<n, nN for a function f:[0,)R is defined as D0+ϱf(ι)=1Γ(nϱ)(ddι)n0ι(ιθ)nϱ1f(θ)dθ.Notice that the Riemann–Liouville fractional derivative of order ϱ[n1,n) exists almost everywhere on [0,) if fACn([0,),R).

Definition 2.3

The Caputo derivative of order ϱ[n1,n) for a function f:[0,)R can be written as CD0+ϱf(ι)=D0+ϱ(f(ι)k=0n1ιkk!fk(0)),ι>0,n1<ϱ<n.Note that the Caputo fractional derivative of order ϱ[n1,n) exists almost everywhere on [0,) if fACn([0,),R).

Lemma 2.1

[Citation54]

Let E a closed convex subset of a Banach space H and F be an open subset of E with 0F. In addition, G:FˆSc,cp(E) is an u.s.c compact map. Then either

  • G has fixed point in Fˆ or

  • uF and μ(0,1) such that uμG(u).

Lemma 2.2

[Citation55]

Let (H,d) be a complete metric space. If K:HScl(H) is a contraction, then Fix K0.

Lemma 2.3

[Citation56]

Let H:WW be a completely continuous operator in Banach Space W and the set Ω={xW|x=γHx,0<γ<1} is bounded. Then H has a fixed point in W.

Lemma 2.4

Let H1,H2C(S,R) and v,wC(S,R). Then the integral solution for the linear system of SFDEs: (4) {(CDϱ+φCDϱ1)v(ι)=H1(ι),ιS=[0,T],(CDς+φCDς1)w(ι)=H2(ι),ιS=[0,T],(v+w)(0)=(v+w)(T),ϵδ(vw)(θ)dθ=ϕ,(4) is given by (5) v(ι)=[eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)H1(a)da)dθ+0Teφ(Tθ)×(0θ(θa)ς2Γ(ς1)H2(a)da)dθ)+[φ(eφδeφϵ){ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)H1(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)H2(m)dm)da)dθ}]}+0ιeφ(ιθ)(0θ(θa)ϱ2Γ(ϱ1)H1(a)da)dθ],(5) (6) w(ι)=[eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)H1(a)da)dθ+0Teφ(Tθ)×(0θ(θa)ς2Γ(ς1)H2(a)da)dθ)[φ(eφδeφϵ){ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)H1(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)H2(m)dm)da)dθ}]}+0ιeφ(ιθ)(0θ(θa)ς2Γ(ς1)H2(a)da)dθ],(6)

Proof.

As argued in [Citation43], the general solution of the system (Equation4) can be written as (7) v(ι)=c0eφι+0ιeφ(ιs)×(0ι(sa)(ϱ2)Γ(ϱ1)H1(a)da)dθ,w(ι)=d0eφι+0ιeφ(ιs)×(0ι(sa)(ς2)Γ(ς1)H2(a)da)dθ,(7) where c0,d0 are arbitrary constants. Using BCs (Equation4) in (Equation7), we obtain (8) c0=12{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)H1(a)da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)H2(a)da)dθ)+[φ(eφδeφϵ){ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)H1(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)H2(m)dm)da)dθ}]},(8) and (9) d0=12{1(1+eφT)((θa)ϱ2Γ(ϱ1)0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)H1(a)da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)H2(a)da)dθ)[φ(eφδeφϵ){ϕϵδ(0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)H1(m)dm)da)dθ+ϵδ(0θeφ(θa)×(0a(am)ς2Γ(ς1)H2(m)dm)da)dθ}]}.(9) The solutions (Equation5) and (Equation6) are obtained by substituting the values of c0 and d0 in (Equation7) respectively.

3. Main results

The main results are stated and proved in this section. The results are carried out separately for systems (Equation2) and (Equation3).

3.1. Existence results for system (2)

Define W=C(S,R)×C(S,R) as the Banach space endowed with norm (v,w)=supιS|v(ι)|+supιS|w(ι)|, for (v,w)W. Using Lemma 2.4, we convert system (Equation2) into a fixed point problem as v=Ψv, the following operator Ψ:WW is defined by (10) Ψ(v,w)(ι)=(Ψ1(v,w)(ι),Ψ2(v,w)(ι)),(10) where (11) Ψ1(v,w)(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)H1(a,v(a),w(a))da)dθ+0Teφ(Tθ)×(0θ(θa)ς2Γ(ς1)H2(a,v(a),w(a))da)dθ)+[φ(eφδeφϵ)(ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)H1(m,v(m),w(m))dm)da(am)ϱ2Γ(ϱ1))dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)H2(m,v(m),w(m))dm)da(am)ς2Γ(ς1))dθ)]}+0ιeφ(ιθ)×(0θ(θa)ϱ2Γ(ϱ1)H1(a,v(a),w(a))da)dθ,(11) and (12) Ψ2(v,w)(ι)=eφι2{1(1+eφT)((θa)ϱ2Γ(ϱ1)0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)H1(a,v(a),w(a))da)dθ+0Teφ(Tθ)×(0θ(θa)ς2Γ(ς1)H2(a,v(a),w(a))da)dθ)[φ(eφδeφϵ)(ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)H1(m,v(m),w(m))dm)da(am)ϱ2Γ(ϱ1))dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)H2(m,v(m),w(m))dm)da(am)ς2Γ(ς1))dθ)]}+0ιeφ(ιθ)×(0θ(θa)ς2Γ(ς1)H2(a,v(a),w(a))da)dθ.(12) Following that, we initiate the hypotheses that will be used to demonstrate the paper's primary research results.

Let H1,H2:S×R2R be continuous functions.

(Q1)

There exist continuous positive functions γi,kiC(S,R+),i=1,2,3, such that |H1(ι,v,w)|γ1(ι)+γ2(ι)|v|+γ3(ι)|w|for all (ι,v,w)S×R2,|H2(ι,v,w)|k1(ι)+k2(ι)|v|+k3(ι)|w|for all (ι,v,w)S×R2.

(Q2)

There exist non-negative constants L1,L2, K1 and K2 such that,   ιS pi,qiR,i=1,2. |H1(ι,p1,q1)H1(ι,p2,q2)|(L1|p1p2|+L2|q1q2|),for all ιS,|H1(ι,p1,q1)H2(ι,p2,q2)|(K1|p1p2|+K2|q1q2|),for all ιS. To facilitate the computation, we introduce the notation: (13) λ=eφT2,Υ1=λ[1(1+eφT)(Tϱ1φΓ(ϱ)(1eφT))+{φeφδeφϵ(δϱ1ϵϱ1φ2Γ(ϱ))×(δφ+eφϵϵφeφϵ)(δϱ1ϵϱ1φ2Γ(ϱ))}],(13) (14) Υ2=λ[1(1+eφT)(Tς1φΓ(ς)(1eφT))+{φeφδeφϵ(δϱ1ϵϱ1φ2Γ(ς))×(δφ+eφϵϵφeφϵ)(δϱ1ϵϱ1φ2Γ(ς))}],(14) and Φ=min{1[||γ2||(2Υ1+Tϱ1φΓ(ϱ)(1eφT))+||k2||(2Υ2+Tς1φΓ(ς)(1eφT))],1[||γ3||(2Υ1+Tϱ1φΓ(ϱ)(1eφT))+||k3||(2Υ2+Tς1φΓ(ς)(1eφT))]}. In this portion, we prove the consequence of the existence of the BVP (Equation2) via Schaefer's fixed point theorem [Citation56].

Theorem 3.1

Suppose that (Q1) holds. Furthermore, the assumption is that (15) ||γ2||(2Υ1+Tϱ1φΓ(ϱ)(1eφT))+||k2||(2Υ2+Tς1φΓ(ς)(1eφT))<1,||γ3||(2Υ1+Tϱ1φΓ(ϱ)(1eφT))+||k3||(2Υ2+Tς1φΓ(ς)(1eφT))<1,(15) where Υ1,Υ2 are defined by (Equation13) and (Equation14). Then the problem (Equation2) has at least one solution on S.

Proof.

We begin by demonstrating that the operator Ψ:W W is c.c. Note that Ψ is continuous as the functions H1 and H2 are continuous. Now let Ωr¯W be bounded. Then ∃ positive constants LH1 and LH2 such that |H1(ι,v(ι),w(ι))|LH1, |H2(ι,v(ι),w(ι))|LH2,for all (v,w)Ωr¯,ιS, we have |Ψ1(v,w)(ι)|LH1(Υ1+Tϱ1φΓ(ϱ)(1eφT))+LH2Υ2+φϕeφδeφϵ,|Ψ2(v,w)(ι)|LH1Υ1+LH2(Υ2+Tς1φΓ(ς)(1eφT))+φϕeφδeφϵ.Thus ||Ψ(v,w)||=||Ψ1(v,w)||+||Ψ2(v,w)||LH1(2Υ1+Tϱ1φΓ(ϱ)(1eφT))+LH2(2Υ2+Tς1φΓ(ς)(1eφT))+2φϕeφδeφϵ.Thus the operator Ψ is uniformly bounded as a result of the preceding inequality. Let Ψ prove that it determines bounded sets into equicontinuous sets of W, let ι1,ι2[0,T], ι1<ι2, and (v,u Ωr¯). Then |Ψ1(v,w)(ι2)Ψ1(v,w)(ι1)||eφι2eφι12{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)LH1da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)LH2da)dθ)+[φ(eφδeφϵ)(ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)LH1dm)da)dθ+ϵδ(0θeφ(θa)(0a(am)ς2Γ(ς1)LH2dm)da(0a(am)ς2Γ(ς1)LH2dm))dθ)]}|+|0ι1(eφ(ι2θ)eφ(ι1θ))(0θ(θa)ϱ2Γ(ϱ1)LH1da)×(0θ(θa)ϱ2Γ(ϱ1)LH1da)dθ+ι1ι2eφ(ι2θ)(0θ(θa)ϱ2Γ(ϱ1)LH1da)dθ|.Analogously, we can obtain |Ψ2(v,w)(ι2)Ψ2(v,w)(ι1)||eφι2eφι12{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)LH1da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)LH2da)dθ)+[φ(eφδeφϵ)(ϕϵδ(0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)LH1dm)da)dθ+ϵδ(0θeφ(θa)(0a(am)ς2Γ(ς1)LH2dm)da(0a(am)ς2Γ(ς1)LH2dm))dθ)]}|+|0ι1(eφ(ι2θ)eφ(ι1θ))(0θ(θa)ς2Γ(ς1)LH2da)×(0θ(θa)ς2Γ(ς1)LH2da)dθ+ι1ι2eφ(ι2θ)(0θ(θa)ς2Γ(ς1)LH2da)dθ|.Take note that in the limit ι1ι2, the RHS of the preceding inequalities tends to zero independently of (v,w)Ωr¯. Thus the operator Ψ(v,w) is equicontinuous, and hence by, Arzela–Ascoli theorem, Ψ(v,w) is c.c. Next, it will be verified that the set Θ={(v,w)W|(v,w)=γΨ(v,w),0<γ<1} is bounded. For any ιS, we have v(ι)=γΨ1(v,w)(ι),w(ι)=γΨ2(v,w)(ι).Using Υ1,Υ2 defined by (Equation13)–(Equation14), we get |v(ι)|=γ|Ψ1(v,w)(ι)|(||γ1||+||γ2||||v||+||γ3||||w||)×(Υ1+Tϱ1φΓ(ϱ)(1eφT))+(||1||+||k2||||v||+||k3||||w||)Υ2+φϕeφδeφϵ,|w(ι)|=γ|Ψ2(v,w)(ι)|(||γ1||+||γ2||||v||+||γ3||||w||)Υ1+(||1||+||k2||||v||+||k3||||w||)×(Υ2+Tς1φΓ(ς)(1eφT))+φϕeφδeφϵ.In consequence, we get ||v||+||w||||γ1||(2Υ1+Tϱ1φΓ(ϱ)(1eφT))+||k1||(2Υ2+Tς1φΓ(ς)(1eφT))+2φϕeφδeφϵ+[||γ2||(2Υ1+Tϱ1φΓ(ϱ)(1eφT))+||k2||(2Υ2+Tς1φΓ(ς)(1eφT))]||v||+[||γ3||(2Υ1+Tϱ1φΓ(ϱ)(1eφT))+||k3||(2Υ2+Tς1φΓ(ς)(1eφT))]||w||.Then, using Equation (Equation15), we conclude that ||(v,w)||||γ1||(2Υ1+Tϱ1φΓ(ϱ)(1eφT))+||k1||(2Υ2+Tς1φΓ(ς)(1eφT))+2φϕeφδeφϵΦ.This demonstrates that the set Θ is bounded. Hence, by Schaefer's fixed point theorem, there exists a solution of (Equation2).

Next, we express our second result, which is based on Banach's fixed point theorem and concerns the existence of a unique solution to (Equation2).

Theorem 3.2

Suppose that (Q2) hold and that (16) C(2Υ1+Tϱ1φΓ(ϱ)(1eφT))+K(2Υ2+Tς1φΓ(ς)(1eφT))<1,(16) where C=max{C1,C2}, K=max{K1,K2} and Υi,i=1,2 are defined by (Equation13)–(Equation14). Then the problem (Equation2) has a unique solution.

Proof.

Let us choose M1=supι[0,T]|H1(ι,0,0)|, and M2=supι[0,T]|H2(ι,0,0)| and fix r>M1(2Υ1+Tϱ1φΓ(ϱ)(1eφT))+M2(2Υ2+Tς1φΓ(ς)(1eφT))1(C(2Υ1+Tϱ1φΓ(ϱ)(1eφT))+K(2Υ2+Tς1φΓ(ς)(1eφT))).Then we show that ΨBrBr, where Br={(v,w)W:||(v,w)||r}, we have |Ψ1(v,w)(ι)|[eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)[|H1(a,v(a),w(a))H1(a,0,0)|+M1]da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)×[|H2(a,v(a),w(a))H2(a,0,0)|+M2]da)dθ)+[φ(eφδeφϵ){ϕϵδ(0θeφ(θa)(0a(am)ϱ2Γ(ϱ1)[|H1(m,v(m),w(m)H1(m,0,0))|+M1]dm)da)dθ+ϵδ(0θeφ(θa)(0a(am)ς2Γ(ς1)×[|H2(m,v(m),w(m))H2(m,0,0)|+M2]dm(am)ς2Γ(ς1))da)dθ}]}+0ιeφ(ιθ)(0θ(θa)ϱ2Γ(ϱ1)×[|H1(a,v(a),w(a))H1(a,0,0)|]+M1]da(θa)ϱ2Γ(ϱ1))dθ],(C(Υ1+Tϱ1φΓ(ϱ)(1eφT))+KΥ2)×(||v||+||w||)+M1(Υ1+Tϱ1φΓ(ϱ)(1eφT))+M2Υ2,which leads to Ψ1(v,w)(C(Υ1+Tϱ1φΓ(ϱ)(1eφT))+KΥ2)×(||v||+||w||)+M1(Υ1+Tς1φΓ(ς)(1eφT))+M2Υ2.when the norm for ιS. Equivalently, for (v,w))Br, one can obtain Ψ2(v,w)(K(Υ2+Tς1φΓ(ς)(1eφT))+CΥ1)×(||v||+||w||)+M2(Υ2+Tς1φΓ(ς)(1eφT))+M1Υ1.Therefore, for any (v,w)Br, we have ||(Ψ(v,w))||=||(Ψ1(v,w))||+||(Ψ2(v,w))||(C(2Υ1+Tϱ1φΓ(ϱ)(1eφT))+K(2Υ2+Tϱ1φΓ(ϱ)(1eφT)))(||v||+||w||)+M1(2Υ1+Tϱ1φΓ(ϱ)(1eφT))+M2(2Υ2+Tς1φΓ(ς)(1eφT))<r.which demonstrates that Ψ maps Br into itself. To demonstrate that the operator Ψ is a contraction, let (p1,q1),(p2,q2)W,ιS. Then, in view of (Q2), we obtain

|(Ψ1(p1,q1))(Ψ1(p2,q2))|[eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)|H1(a,p1(a),q1(a))H1(a,p2(a),q2(a))|da(θa)ϱ2Γ(ϱ1))dθ+0Teφ(Tθ)×(0θ(θa)ς2Γ(ς1)|H2(a,p1(a),q1(a))H2(a,p2(a),q2(a))|da(θa)ς2Γ(ς1))dθ)+[φ(eφδeφϵ){ϕϵδ((θa)ς2Γ(ς1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)|H1(m,p1(m),q1(m))H1(m,p2(m),q2(m))|dm(am)ϱ2Γ(ϱ1))da)dθ+ϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ς2Γ(ς1)|H2(m,p1(m),q1(m))H1(m,p2(m),q2(m))|dm(am)ϱ2Γ(ϱ1))da)dθ}]}+0ιeφ(ιθ)(0θ(θa)ϱ2Γ(ϱ1)|H1(a,p1(a),q1(a))H1(a,p2(a),q2(a))|da(θa)ϱ2Γ(ϱ1))dθ],(C(Υ1+Tϱ1φΓ(ϱ)(1eφT))+KΥ2)×(||v||+||w||), |(Ψ2(p1,q1))(Ψ2(p2,q2))|[eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)|H1(a,p1(a),q1(a))H1(a,p2(a),q2(a))|da(θa)ϱ2Γ(ϱ1))dθ+0Teφ(Tθ)×(0θ(θa)ς2Γ(ς1)|H2(a,p1(a),q1(a))H2(a,p2(a),q2(a))|da)dθ(θa)ς2Γ(ς1))+[φ(eφδeφϵ){ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)|H1(m,p1(m),q1(m))H1(m,p2(m),q2(m))|dm(am)ϱ2Γ(ϱ1))da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)|H2(m,p1(m),q1(m))H1(m,p2(m),q2(m))|dm(am)ς2Γ(ς1))da)dθ}]}+0ιeφ(ιθ)×(0θ(θa)ς2Γ(ς1)|H2(a,p1(a),q1(a))H2(a,p2(a),q2(a))|da(θa)ς2Γ(ς1))dθ],(K(Υ2+Tς1φΓ(ς)(1eφT))+CΥ1)×(||v||+||w||). Clearly, the preceding inequalities imply that ||(Ψ(p1,q1))(Ψ(p2,q2))||=(Ψ1(p1,q1))(Ψ1(p2,q2))+(Ψ2(p1,q1))(Ψ2(p2,q2))(C(2Υ1+Tϱ1φΓ(ϱ)(1eφT))+K(Υ2+Tς1φΓ(ς)(1eφT)))×||(p1p2,q1q2)||.As a result, in light of the assumption (Equation16), the operator \Psi is a contraction. As a result of Banach's contraction mapping theorem, Ψ has an unique fixed point. This demonstrates that system (Equation2) has a unique solution on S.

If γ2(ι)=γ3(ι)0 and k2(ι)=k2(ι)0 are valid, then Theorem (3.1) has the special case form shown below.

Remark 3.1

There exist positive functions γ1,k1C(S,R+) and H1,H2:S×R2R which are continuous functions such that |H1(ι,v,w)|ω1(ι),|H2(ι,v,w)|ϵ1(ι)for all (ι,v,w)S×R2;Then system (Equation2) has at least one solution on S.

Remark 3.2

According to the assumptions of Theorem 3.1, if γi(ι)=ωi,ki(ι)=ϵi,i=1,2,3

(ϵi and ωi non-negative constants, and the criteria of the functions H1,H2 have the following form:

(Q1) there are real constants ωi,ϵi>0,i=1,2,3, so |H1(ι,v,w)|ω1+ω2|v|+ω3|w|for all (ι,v,w)S×R2,|H2(ι,v,w)|ϵ1+ϵ2|v|+ϵ3|w|for all (ι,v,w)S×R2;and (Equation15) becomes ω2(2Υ1+Tϱ1φΓ(ϱ)(1eφT))+ϵ2(2Υ2+Tς1φΓ(ς)(1eφT))<1,ω3(2Υ1+Tϱ1φΓ(ϱ)(1eφT))+ϵ3(2Υ2+Tς1φΓ(ς)(1eφT))<1.

3.2. Existence results for system (3)

Definition 3.1

A function (v,w)C2(S,R)×C2(S,R) satisfying the BCs (v+w)(0)=(v+w)(T), ϵδ(vw)(θ)dθ=ϕ and for which ∃ functions h1,h2L1(S,R)h1(ι)H1(ι,v(ι),w(ι)),h2(ι)H2(ι,v(ι),w(ι)), a.e on ιS and (17) v(ι)=eφι2{1(1+eφT)((θa)ϱ2Γ(ϱ1)0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ)+[φ(eφδeφϵ)(ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h2(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ,(17) and (18) w(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ+0Teφ(Tθ)×(0θ(θa)ς2Γ(ς1)h2(a)da)dθ)[φ(eφδeφϵ)(ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h2(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ,(18) is referred to as a coupled solution for system (Equation3). Let VH1(v,w)={h1L1(S,R):h1(ι)H1(ι,v(ι),w(ι)),for a.e ιS},and VH2(v,w)={h2L1(S,R):h2(ι)H2(ι,v(ι),w(ι)),for a.e ιS},define the sets of H1,H2 selections for each (v,w)W×W. Using Lemma 2.4, the following operators Λ1,Λ2:W×WU(W×W) are defined by: (19) Λ1(v,w)(ι)={g1W×W: h1VH1(v,w),h2VH2(v,w)  g1(v,w)(ι)=P1(v,w)(ι),  ιS},(19) and (20) Λ2(v,w)(ι)={g2W×W: h1VH1(v,w),h2VH2(v,w)  g2(v,w)(ι)=P2(v,w)(ι),  ιS},(20) where (21) P1(v,w)(ι)=eφι2{1(1+eφT)((θa)ϱ2Γ(ϱ1)0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ)+[φ(eφδeφϵ)(ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h2(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ,(21) and (22) P2(v,w)(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ)[φ(eφδeφϵ)(ϕϵδ(0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h2(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ.(22)

Following that, we define the operator Λ:W×WU(W×W) by Λ(v,w)(ι)=(Λ1(v,w)(ι)Λ2(v,w)(ι))where Λ1 and Λ2 are defined in (Equation19) and (Equation20), respectively.

In this portion, we prove the existence of solutions for the BVP (Equation3) via nonlinear alternative of Leray–Schauder [Citation55]. Following that, we initiate the assumptions that will be used to demonstrate the paper's primary research results.

(Q3)

H1,H2:S×R2U(R) are L1-Caratheodory and have convex values.

(Q4)

∃ continuous increasing functions γ1,γ2,k1,k2:[0,)[0,) and functions l1,l2C(S,R+), such that H1(ι,v,w)U:=sup{|h1|:h1H1(ι,v,w)}l1(ι)[γ1(v)+k1(w)]for each (ι,v,w)S×R2,H2(ι,v,w)U:=sup{|h2|:h2H2(ι,v,w)}l2(ι)[γ2(v)+k2(w)]for each (ι,v,w)S×R2.

(Q5)

∃ a constant Z>0 such that Z(2Υ1)l1(γ1(Z)+k1(Z))+(2Υ2)l2(γ2(Z)+k2(Z))>1, where Υ1,Υ2 are defined by (Equation13) and (Equation14).

(Q6)

H1,H2:S×R2Ucp(R) are such that H1(,v,w):SUcp(R2) and H2(,v,w):SUcp(R2) are measurable for each v,wR.

(Q7)

Gd(H1(ι,v,w),H1(ι,vˆ,wˆ))s1(ι)(|vvˆ|+|wwˆ|),and Gd(H2(ι,v,w),H2(ι,vˆ,wˆ))s2(ι)(|vvˆ|+|wwˆ|), ∀ ιS and v,w,vˆ,wˆR with s1,s2C(S,R+) and d(0,H1(ι,0,0))s1(ι), d(0,H2(ι,0,0))s2(ι)ιS.

Theorem 3.3

Assume that (Q3), (Q4) and (Q5) holds. Then system (Equation3) has at least one solution on S.

Proof.

Consider Λ1,Λ2:W×WU(W×W) the operators which is given by (Equation19) and (Equation20) respectively. Using the assumption (Q3), the sets VH1(v,w) and VH2(v,w) are non-empty for each (v,w)W×W. Then, for h1VH1(v,w), h2VH2(v,w) for (v,w)W×W, we have (23) g1(v,w)(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ)+[φ(eφδeφϵ)(ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h2(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ,(23) and (24) g2(v,w)(ι)=eφι2{1(1+eφT)((θa)ϱ2Γ(ϱ1)0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ)[φ(eφδeφϵ)(ϕϵδ(0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h2(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ,(24) where g1Λ1(v,w), g2Λ2(v,w), and so (g1,g2)Λ(v,w). The operator Λ will be shown to satisfy the Leray–Schauder nonlinear alternative hypotheses in several steps. To begin, we demonstrate that Λ(v,w) has a convex value. Let (gi,gˆi)(Λ1,Λ2), i = 1, 2. Then ∃ h1iVH1(v,w), h2iVH2(v,w), i = 1, 2, ∋ for each ιS, we have (25) gi(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ+0Teφ(Tθ)×(0θ(θa)ς2Γ(ς1)h2(a)da)dθ)+[φ(eφδeφϵ)(ϕϵδ(0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h2(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ,(25) and (26) gˆi(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ+0Teφ(Tθ)×(0θ(θa)ς2Γ(ς1)h2(a)da)dθ)[φ(eφδeφϵ)(ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1(m)dm)da)dθ+ϵδ(0θeφ(θa)×(0a(am)ς2Γ(ς1)h2(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ.(26) Let 0ν1. Then, for each ιS, we have (27) [νg1+(1ν)g2](ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)[νh11(a)+(1ν)h12(a)]da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)[νh21(a)+(1ν)h22(a)]da(θa)ς2Γ(ς1))dθ)+[φ(eφδeφϵ)(ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)[νh11(m)+(1ν)h12(m)]dm(am)ϱ2Γ(ϱ1))da)dθ+ϵδ(0θeφ(θa)(0a(am)ς2Γ(ς1)[νh21(m)+(1ν)h22(m)]dm(θa)ϱ2Γ(ϱ1))da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ϱ2Γ(ϱ1)[νh11(a)+(1ν)h12(a)]da(θa)ϱ2Γ(ϱ1))dθ,(27) and (28) [νgˆ1+(1ν)gˆ2](ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)[νh11(a)+(1ν)h12(a)]da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)[νh21(a)+(1ν)h22(a)]da(θa)ϱ2Γ(ϱ1))dθ)[φ(eφδeφϵ)(ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)[νh11(m)+(1ν)h12(m)]dm(am)ϱ2Γ(ϱ1))da)dθ+ϵδ(0θeφ(θa)(0a(am)ς2Γ(ς1)[νh21(m)+(1ν)h22(m)]dm(am)ς2Γ(ς1))da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ς2Γ(ς1)[νh21(a)+(1ν)h22(a)]da)dθ.(28) We may deduce that VH1(v,w) and VH2(v,w) have convex values since H1 and H2 have convex values. Clearly, νg1+(1ν)g2Λ1, νgˆ1+(1ν)gˆ2Λ2, and thus ν(g1,gˆ1)+(1ν)(g2,gˆ2)Λ. For a non-negative number r, let Br={(v,w)W×W:v,wr} be a bounded set in W×W. Then ∃ h1VH1(v,w), h2VH2(v,w) such that (29) g1(v,w)(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ)+[φ(eφδeφϵ)(ϕϵδ(0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h2(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ,(29) and (30) g2(v,w)(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ)[φ(eφδeφϵ)(ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h2(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ.(30) Then we have |g1(v,w)(ι)|eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)|h1(a)|da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)|h2(a)|da)dθ)+[φ(eφδeφϵ)(ϕ+ϵδ(0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)|h1(m)|dm)da)dθ+ϵδ(0θeφ(θa)×(0a(am)ς2Γ(ς1)|h2(m)|dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ϱ2Γ(ϱ1)|h1(a)|da)dθeφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)l1(γ1(r)+k1(r))da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)l2(γ2(r)+k2(r))da(θa)ς2Γ(ς1))dθ)+[φ(eφδeφϵ)(ϕ+ϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)l1(γ1(r)+k1(r))dm(am)ϱ2Γ(ϱ1))da)dθ+ϵδ(0θeφ(θa)(0a(am)ς2Γ(ς1)l2(γ2(r)+k2(r))dm(am)ϱ2Γ(ϱ1))da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ϱ2Γ(ϱ1)l1(γ1(r)+k1(r))da(am)ϱ2Γ(ϱ1))dθ=Υ1l1(γ1(r)+k1(r))+Υ2l2(γ2(r)+k2(r))and |g2(v,w)(ι)|Υ1l1(γ1(r)+k1(r))+Υ2l2(γ2(r)+k2(r)).Thus we get g1,g2=g1(v,w)+g1(v,w)2Υ1l1(γ1(r)+k1(r))+2Υ2l2(γ2(r)+k2(r)).Then we prove that Λ is equicontinuous. Let ι1,ι2S with ι1<ι2. Then ∃ h1VH1(v,w), h2VH2(v,w) such that g1(v,w)(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ)+[φ(eφδeφϵ)(ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h2(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ,and g2(v,w)(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ)[φ(eφδeφϵ)(ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h2(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ.|g1(v,w)(ι2)g1(v,w)(ι1)||eφι2eφι12{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)l1(γ1(r)+k1(r))da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)l2(γ2(r)+k2(r))da(θa)ς2Γ(ς1))dθ)+[φ(eφδeφϵ)(ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)l1(γ1(r)+k1(r))dm(am)ϱ2Γ(ϱ1))da)dθ+ϵδ(0θeφ(θa)(0a(am)ς2Γ(ς1)l2(γ2(r)+k2(r))dm(am)ς2Γ(ς1))da)dθ)]}|+|0ι1(eφ(ι2θ)eφ(ι1θ))×(0θ(θa)ϱ2Γ(ϱ1)l1(γ1(r)+k1(r))da)dθ+ι1ι2eφ(ι2θ)×(0θ(θa)ϱ2Γ(ϱ1)l1(γ1(r)+k1(r))da)dθ|.Analogously, we can obtain |g2(v,w)(ι2)g2(v,w)(ι1)||eφι2eφι12{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)l1(γ1(r)+k1(r))da)dθ+0Teφ(Tθ)×(0θ(θa)ς2Γ(ς1)l2(γ2(r)+k2(r))da)dθ)+[φ(eφδeφϵ)(ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)l1(γ1(r)+k1(r))dm(θa)ϱ2Γ(ϱ1))da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)(0a(am)ς2Γ(ς1)l2(γ2(r)+k2(r))dm(am)ς2Γ(ς1))da)dθ)]}|+|0ι1(eφ(ι2θ)eφ(ι1θ))×(0θ(θa)ς2Γ(ς1)l2(γ2(r)+k2(r))da)dθ+ι1ι2eφ(ι2θ)×(0θ(θa)ς2Γ(ς1)l2(γ2(r)+k2(r))da)dθ|.As a consequence, the operator Λ(v,w) is equicontinuous, hence the operator Λ(v,w) is c.c according to the Arzela–Ascoli theorem. We know from [Citation53, Proposition 1.2] that a c.c operator has a closed graph if it is upper semicontinuous. As a result, we must demonstrate that Λ has a closed graph. Let (pn,qn)(p,q), (gn,gˆn)Λ(pn,qn) and (gn,gˆn)(g,gˆ), then we must demonstrate (g,gˆ)Λ(p,q). Remember that (gn,gˆn)Λ(pn,qn) implies that ∃ h1nVH1(v,w), h2nVH2(v,w) such that gn(pn,qn)(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1n(a)da)dθ+0Teφ(Tθ)×(0θ(θa)ς2Γ(ς1)h2n(a)da)dθ)+[φ(eφδeφϵ)(ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1n(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h2n(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ϱ2Γ(ϱ1)h1n(a)da)dθ,and gˆn(pn,qn)(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1n(a)da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)h2n(a)da)dθ)[φ(eφδeφϵ)(ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1n(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h2n(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ς2Γ(ς1)h2n(a)da)dθ.Consider the Π1,Π2:L1(S,W×WC(S,W×W continuous linear operators provided by (31) Π1(v,w)(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ)+[φ(eφδeφϵ)(ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h2(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ,(31) and (32) Π2(v,w)(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ+0Teφ(Tθ)×(0θ(θa)ς2Γ(ς1)h2(a)da)dθ)[φ(eφδeφϵ)(ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h2(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ.(32) We can deduce from [Citation57] that (Φ1,Φ2)(VH1,VH2) is a closed graph operator. In addition, we have (gn,gˆn)(Φ1,Φ2)(VH1(pn,qn),VH2(pn,qn)) for all n. Since (pn,qn)(p,q), (gn,gˆn)g,gˆ), it follows that h1nVH1(v,w), h2nVH2(v,w) such that g(p,q)(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ+0Teφ(Tθ)×(0θ(θa)ς2Γ(ς1)h2(a)da)dθ)+[φ(eφδeφϵ)(ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h2(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ,and gˆ(p,q)(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ)[φ(eφδeφϵ)(ϕϵδ(0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h2(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ.(i.e.) (gn,gˆn)Λ(p,q). Let (v,w)υΛ(v,w). Then ∃ h1VH1(v,w), h2VH2(v,w) such that (33) v(ι)=υeφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ+0Teφ(Tθ)×(0θ(θa)ς2Γ(ς1)h2(a)da)dθ)+[φ(eφδeφϵ)(ϕϵδ(0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h2(m)dm)da)dθ)]}+υ0ιeφ(ιθ)(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ,(33) and (34) w(ι)=υeφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ+0Teφ(Tθ)×(0θ(θa)ς2Γ(ς1)h2(a)da)dθ)[φ(eφδeφϵ)(ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1(m)dm)da)dθ+ϵδ(0θeφ(θa)(0a(am)ς2Γ(ς1)h2(m)dm)da)dθ)]}+υ0ιeφ(ιθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ.(34) For each ιS, we obtain v,w=v+w2Υ1l1(γ1(v)+k1(w))+2Υ2l2(γ2(v)+k2(w)),which implies that v,w2Υ1l1(γ1(v)+k1(w))+2Υ2l2(γ2(v)+k2(w))1.According to (Q5), Z exists such that (v,w)Z. Let us fix E={(v,w)W×W:(v,w)<Z}.It should be noted that operator Λ:E¯Ucv,cp(W)×Ucv,cp(W) is c.c and u.v.c. There is no (v,w)E ∋ (v,w)υΛ(v,w) for some υ(0,1) by E selection. As a result, we can deduce from the Leray–Schauder nonlinear alternative [Citation55] that Λ has a fixed point (v,w)E¯, which is a solution of system (Equation3).

Let (W,d) denote a metric space generated from the normed space (W,), and let Gd:U(W)×U(W)R{} be defined by Gd(X,Y)=max{supxXd(x,Y),supyY}, where d(X,y)=infxXd(x,y) and d(x,Y)=infyYd(x,y). Then (Ucl,b(W),Gd) is a metric space and (Ucl(W),Gd) is a generalized metric space (see [Citation57]).

Definition 3.2

A multi-valued K:WU(W) operator is called

  1. δ-Lipschitz iff ∃ δ>0 ∋ Gd(K(c),K(d))δd(c,d) for each c,dW; and

  2. a contraction iff it is δ-Lipschitz with δ<1.

The following result makes use of Covitz and Nadler's theorem for multi-valued maps [Citation54].

Theorem 3.4

Assume that (Q6) and (Q7) holds. Then system (Equation3) has at least one solution on S provided that (35) (2Υ1)s1+(2Υ2)s2<1.(35)

Proof.

Assuming (Q6) that the sets VH1(v,w) and VH2(v,w) are non-empty for each (v,w)W×W, H1 and H2 have measurable selections (see Theorem III.6 in [Citation58]). Next we demonstrate that the operator Λ fulfils the theorem of Covitz and Nadler's [Citation54]. Next we demonstrate that Λ(v,w)Ucl(W)×Ucl(W) for each (v,w)W×W. Let (gn,gˆn)Λ(pn,qn) such that (gn,gˆn)(g,gˆ) in W×W. Then (g,gˆ)W×W and ∃ h1nVH1(pn,qn) and h2nVH1(pn,qn) such that gn(pn,qn)(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1n(a)da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)h2n(a)da)dθ)+[φ(eφδeφϵ)(ϕϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1n(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h2n(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ϱ2Γ(ϱ1)h1n(a)da)dθ,and gˆn(pn,qn)(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1n(a)da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)h2n(a)da)dθ)[φ(eφδeφϵ)(ϕϵδ(0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1n(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h2n(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ς2Γ(ς1)h2n(a)da)dθ.Due to the fact that H1 and H2 have compact values, we pass onto subsequences (referred to as sequences) to ensure that h1n and h2n converge to h1 and h2 in L1(S,R). Hence h1VH1(v,w) and h2VH1(v,w) for each ιS and that gn(pn,qn)(ι)g(v,w)(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ)+[φ(eφδeφϵ)(ϕϵδ(0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h2(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ,and gˆn(pn,qn)(ι)gˆ(v,w)(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h1(a)da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ)[φ(eφδeφϵ)(ϕϵδ(0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h1(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h2(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ς2Γ(ς1)h2(a)da)dθ.As a result, (g,gˆ)Λ, implying that Λ is closed. Following that, we demonstrate that ∃ (defined by (Equation35)) such that Gd(Λ(v,w),Λ(vˆ,wˆ))ρˆ(vvˆ+wwˆ)for each v,vˆ,w,wˆW.Let (v,vˆ),(w,wˆ)W×W and (g1,gˆ1)Λ(v,w). Then ∃ h11VH1(v,w) and h21VH2(v,w) ∋,  for each ιS, we have g1(pn,qn)(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h11(a)da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)h21(a)da)dθ)+[φ(eφδeφϵ)(ϕϵδ(0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h11(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h21(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ϱ2Γ(ϱ1)h11(a)da)dθ,and gˆ1(pn,qn)(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h11(a)da)dθ+0Teφ(Tθ)×(0θ(θa)ς2Γ(ς1)h21(a)da)dθ)[φ(eφδeφϵ)(ϕϵδ(0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h11(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h21(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ς2Γ(ς1)h21(a)da)dθ.Using (Q7), we have Gd(H1(ι,v,w),H1(ι,vˆ,wˆ))s1(ι)(|v(ι)vˆ(ι)|+|w(ι)wˆ(ι)|)and Gd(H2(ι,v,w),H2(ι,vˆ,wˆ))s2(ι)(|v(ι)vˆ(ι)|+|w(ι)wˆ(ι)|).So, ∃ h1H1(ι,v(ι),w(ι)) and h2H2(ι,v(ι),w(ι)) such that |h11(ι)x|s1(ι)(|v(ι)vˆ(ι)|+|w(ι)wˆ(ι)|)and |h21(ι)y|s2(ι)(|v(ι)vˆ(ι)|+|w(ι)wˆ(ι)|).Define Y1,Y2:SU(R) by Y1(ι)={h1L1(S,R):s1(ι)(|v(ι)vˆ(ι)|+|w(ι)wˆ(ι)|)}and Y2(ι)={h2L1(S,R):s2(ι)(|v(ι)vˆ(ι)|+|w(ι)wˆ(ι)|)}.There are functions h12(ι), h22(ι) that are an observable selection for Y1,Y2 because the multi-valued operators Y1H1(ι,y(ι),z(ι)) and Y2H2(ι,y(ι),z(ι)) are measurable (Proposition III.4 in [Citation25]). And h12(ι)H1(ι,y(ι),z(ι)), h22(ι)H2(ι,y(ι),z(ι)) such that ∀ιS, we have |h11(ι)h12(ι)|s1(ι)(|v(ι)vˆ(ι)|+|w(ι)wˆ(ι)|)and |h21(ι)h22(ι)|s2(ι)(|v(ι)vˆ(ι)|+|w(ι)wˆ(ι)|).Let g2(pn,qn)(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h12(a)da)dθ+0Teφ(Tθ)(0θ(θa)ς2Γ(ς1)h22(a)da)dθ)+[φ(eφδeφϵ)(ϕϵδ(0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h12(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h22(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ϱ2Γ(ϱ1)h12(a)da)dθ,and gˆ2(pn,qn)(ι)=eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)h12(a)da)dθ+0Teφ(Tθ)×(0θ(θa)ς2Γ(ς1)h22(a)da)dθ)[φ(eφδeφϵ)(ϕϵδ(0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)h12(m)dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)h22(m)dm)da)dθ)]}+0ιeφ(ιθ)(0θ(θa)ς2Γ(ς1)h22(a)da)dθ.Hence, |g1(v,w)(ι)g2(v,w)(ι)|eφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)|h11(a)h12(a)|da)dθ+0Teφ(Tθ)×(0θ(θa)ς2Γ(ς1)|h21(a)h22(a)|da)dθ)+[φ(eφδeφϵ)(ϕ+ϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)|h11(m)h12(m)|dm(am)ϱ2Γ(ϱ1))da)dθ+ϵδ(0θeφ(θa)(0a(am)ς2Γ(ς1)|h21(m)h22(m)|dm(am)ς2Γ(ς1))da)dθ)]}+0ιeφ(ιθ)×(0θ(θa)ϱ2Γ(ϱ1)|h11(a)h12(a)|da)dθeφι2{1(1+eφT)(0Teφ(Tθ)×(0θ(θa)ϱ2Γ(ϱ1)s1(a)(|v(a)vˆ(a)|+|w(a)wˆ(a)|)da(am)ϱ2Γ(ϱ1))dθ+0Teφ(Tθ)×(0θ(θa)ς2Γ(ς1)s2(a)(|v(a)vˆ(a)|+|w(a)wˆ(a)|)da(am)ϱ2Γ(ϱ1))dθ)+[φ(eφδeφϵ)(ϕ+ϵδ((am)ϱ2Γ(ϱ1)0θeφ(θa)×(0a(am)ϱ2Γ(ϱ1)s1(m)(|v(m)vˆ(m)|+|w(m)wˆ(m)|(am)ϱ2Γ(ϱ1))dm)da)dθ+ϵδ((am)ς2Γ(ς1)0θeφ(θa)×(0a(am)ς2Γ(ς1)s2(m)(|v(m)vˆ(m)|+|w(m)wˆ(m)|)dm(am)ς2Γ(ς1))da)dθ)]}+0ιeφ(ιθ)×(0θ(θa)ϱ2Γ(ϱ1)s1(a)(|v(a)vˆ(a)|+|w(a)wˆ(a)|)da(θa)ϱ2Γ(ϱ1))dθΥ1s1(vvˆ+wwˆ)+Υ2s2(vvˆ+wwˆ).Thus g1(v,w)g2(v,w)Υ1s1(vvˆ+wwˆ)+Υ2s2(vvˆ+wwˆ).Similarly, we can define that gˆ1(v,w)gˆ2(v,w)Υ1s1(vvˆ+wwˆ)+Υ2s2(vvˆ+wwˆ).Therefore (g1,gˆ1),(g2,gˆ2)2Υ1s1(vvˆ+wwˆ)+2Υ2s2(vvˆ+wwˆ).Similarly, by swapping the positions of (v,w) and (vˆ,wˆ), we can obtain Gd(P(v,w),P(vˆ,wˆ))2Υ1s1(vvˆ+wwˆ)+2Υ2s2(vvˆ+wwˆ).In light of the assumption, Λ is a contraction (Equation35). As a result of fixed point theorem of Covitz and Nadler's [Citation54], Λ has a fixed point (v,w) that is a solution to system (Equation3).

4. Examples

In consistence with systems (Equation2) and (Equation3) and the main theorems, we provide some examples in this section.

Example 4.1

Consider the following system: (36) (CD12+12CD121)v(ι)=H1(ι,v(ι),w(ι)),ι[0,2](CD23+12CD231)w(ι)=H2(ι,v(ι),w(ι)),ι[0,2](v+w)(0)=(v+w)(2),3813(vw)(θ)dθ=3,(36) where ϱ=1/2,ς=2/3,ϵ=3/8,δ=1/3,ϕ=3,T=2. Utilizing the above data, we get Υ1=0.5620183 Υ2=0.7051172683, where Υ1 and Υ2 are respectively given by Equation13 and Equation14. To illustrate Theorem 3.1, we will use H1(ι,v(ι),w(ι))=eι2900+ι2(vι+sinw+cosι)H2(ι,v(ι),w(ι))=1(3+ι)2(sinv+w2+eι).Next, H1 and H2 are continuous and fulfil the hypothesis (Q1) with γ1(ι)=eιcosι2900+ι2,γ2(ι)=ιeι2900+ι2,γ3(ι)=eι2900+ι2,k2=eι(3+ι)2,k1=1(3+ι)2andk3=12(3+ι)2.Also ||γ2||(2Υ1+Tϱ1φΓ(ϱ)(1eφT))+||k2||(2Υ2+Tς1φΓ(ς)(1eφT))0.2670458452and||γ3||(2Υ1+Tϱ1φΓ(ϱ)(1eφT))+||k3||(2Υ2+Tς1φΓ(ς)(1eφT))0.1335229226.Thus, by Theorem 3.1, ∃ a solution to system (Equation36) on [0,2].

For the application of Theorem 3.2, we choose (37) H1(ι,v(ι),w(ι))=140(1+ι2)(|v||1+|v+tan1w)H2(ι,v(ι),w(ι))=1900+ι2(sinw+2tan1v),(37) where H1 and H2 are continuous and fulfil the hypothesis (Q2) with C1=C2=1/40=C and K1=1/15,K2=1/30 and K=1/15. Further, we get (C(2Υ1+Tϱ1φΓ(ϱ)(1eφT))+K(Υ2+Tς1φΓ(ς)(1eφT)))0.1837667143<1.

Example 4.2

Consider system (Equation36) again. It is clear that all the assumptions of Theorem 3.2 are fulfilled. Consequently, ∃ a unique solution to system (Equation36).

Example 4.3

Consider the following system: (38) (CD12+12CD121)v(ι)H1(ι,v(ι),w(ι)),ιJ=[0,2](CD23+12CD231)w(ι)H2(ι,v(ι),w(ι)),ιJ=[0,2](v+w)(0)=(v+w)(2),3813(vw)(θ)dθ=3,(38) where ϱ=1/2,ς=2/3,ϵ=3/8,δ=1/3,ϕ=3,T=2, H1(ι,v,w)=[116|v|1+|v|,0][0,116|sin(w)|1+|sin(w)|] and H2(ι,v,w)=[116|w|1+|w|,0][0,116|cos(v)|1+|cos(v)|], and on the other hand, Gd(H1(ι,v,w),H1(ι,vˆ,wˆ))116|vvˆ|+116|wwˆ|, v,vˆ,w,wˆR,Gd(H2(ι,v,w),H2(ι,vˆ,wˆ))116|vvˆ|+116|wwˆ|, v,vˆ,w,wˆR.Utilizing the above data, we get Υ1=0.5620183 Υ2=0.7051172683 and (2Υ1)p1+(2Υ2)p20.1583919450<1. All the assumptions of Theorem 3.4 are fulfilled. As a result, ∃ a solution to system (Equation38).

5. Concluding remarks

In this research work, we studied a new BVP involving a coupled system of nonlinear SFDEs and inclusions of the Caputo type and supplemented with coupled integral boundary conditions. We have studied a new type of coupled boundary condition that determines the sum of unknown functions at the boundary points and along any arbitrary segment of the domain. Under these conditions, we solved a nonlinear Caputo SFDEs and inclusion system. The consequences of existence and uniqueness were examined via single-valued and multi-valued maps. It is also possible to broaden the scope of this investigation to include fractional differential and integral operators of the Riemann–Liouville and Hadamard types. Our results aren't only novel in the context of the problem, but they also lead to some novel cases involving specific parameter choices. The results of this paper are limited to a few intriguing instances with adequate values for the systems parameters. For instance, our results correspond to those for new coupled Stieltjes boundary conditions if we set θ=K(θ) in ϵδ(vw)(θ)dK(θ)=ϕ in (Equation2) and (Equation3), and also we can obtained new existence results through special cases as stated in Remark 3.1 and Remark 3.2. We believe that the results discussed in this paper are of great significance for the scientific audience. Future research could focus on different concepts of stability and existence concerning a neutral time-delay system/inclusion and a time-delay system/inclusion with finite delay.

Declarations

Availability of data and material

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Authors' contributions

All authors contributed equally and significantly to this paper. All authors have read and approved the final version of the manuscript.

Acknowledgements

J. Alzabut would like to thank Prince Sultan University and OSTİM Technical University for supporting this research.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

  • Băleanu D, Mustafa OG, O'Regan D. A uniqueness criterion for fractional differential equations with Caputo derivative. Nonlinear Dyn. 2013;71(4):635–640.
  • Hamoud A. Existence and uniqueness of solutions for fractional neutral Volterra–Fredholm integro differential equations. Adv Theory Nonlinear Anal Appl. 2020;4(4):321–331.
  • Subramanian M, Baleanu D. Stability and existence analysis to a coupled system of Caputo type fractional differential equations with Erdélyi–Kober integral boundary conditions. Appl Math Inf Sci. 2020;14(3):415–424.
  • Muthaiah S, Baleanu D. Existence of solutions for nonlinear fractional differential equations and inclusions depending on lower-order fractional derivatives. Axioms. 2020;9(2):44.
  • Baleanu D, Mousalou A, Rezapour S. On the existence of solutions for some infinite coefficient-symmetric Caputo-Fabrizio fractional integro-differential equations. Boundary Value Problems. 2017;2017(1):1–9.
  • Aydogan MS, Baleanu D, Mousalou A, et al. On high order fractional integro-differential equations including the Caputo–Fabrizio derivative. Boundary Value Problems. 2018;2018(1):1–15.
  • Baleanu D, Rezapour S, Saberpour Z. On fractional integro-differential inclusions via the extended fractional Caputo–Fabrizio derivation. Boundary Value Problems. 2019;2019(1):1–17.
  • Tariq KU, Zainab H, Seadawy AR, et al. On some novel optical wave solutions to the paraxial m-fractional nonlinear Schrödinger dynamical equation. Opt Quantum Electron. 2021;53(5):1–14.
  • Seadawy AR, Younis M, Baber MZ, et al. Diverse acoustic wave propagation to confirmable time–space fractional kp equation arising in dusty plasma. Commun Theor Phys. 2021;73(11):115004.
  • Younis M, Bilal M, Rehman S, et al. Perturbed optical solitons with conformable time-space fractional Gerdjikov–Ivanov equation. Math Sci. 2021;1–13. DOI:10.1007/s40096-021-00431-3.
  • Seadawy AR, Bilal M, Younis M, et al. Resonant optical solitons with conformable time-fractional nonlinear Schrödinger equation. Int J Modern Phys B. 2021;35(03):2150044.
  • Klafter J, Lim S, Metzler R. Fractional dynamics: recent advances. 2012.
  • Podlubny I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. 1998.
  • Valério D, Machado JT, Kiryakova V. Some pioneers of the applications of fractional calculus. Fract Calculus Appl Anal. 2014;17(2):552–578.
  • Machado JT, Kiryakova V, Mainardi F. Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul. 2011;16(3):1140–1153.
  • Kilbas AAA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations. Vol. 204 (North-Holland Mathematics Studies), Elsevier Science Inc.; 2006.
  • Baleanu D, Mohammadi H, Rezapour S. Analysis of the model of HIV-1 infection of CD4+ CD4 t-cell with a new approach of fractional derivative. Adv Differ Equ. 2020;2020(1):1–17.
  • Baleanu D, Etemad S, Pourrazi S, et al. On the new fractional hybrid boundary value problems with three-point integral hybrid conditions. Adv Differ Equ. 2019;2019(1):1–21.
  • Rezapour S, Mohammadi H, Jajarmi A. A new mathematical model for Zika virus transmission. Adv Differ Equ. 2020;2020(1):1–15.
  • Subramanian M, Alzabut J, Baleanu D, et al. Existence, uniqueness and stability analysis of a coupled fractional-order differential systems involving Hadamard derivatives and associated with multi-point boundary conditions. Adv Differ Equ. 2021;2021(1):1–46.
  • Duraisamy P, Gopal TN, Subramanian M. Analysis of fractional integro-differential equations with nonlocal Erdélyi–Kober type integral boundary conditions. Fract Calculus Appl Anal. 2020;23(5):1401–1415.
  • Younas U, Younis M, Seadawy AR, et al. Diverse exact solutions for modified nonlinear Schrödinger equation with conformable fractional derivative. Results Phys. 2021;20:103766.
  • Younis M, Seadawy AR, Baber M, et al. Analytical optical soliton solutions of the Schrödinger–Poisson dynamical system. Results Phys. 2021;27:104369.
  • Rizvi S, Seadawy AR, Younis M, et al. Optical dromions for perturbed fractional nonlinear Schrödinger equation with conformable derivatives. Optical Quantum Electron. 2021;53(8):1–13.
  • Miller KS, Ross B. An introduction to the fractional calculus and fractional differential equations. New York: Wiley; 1993.
  • Wei Z, Dong W. Periodic boundary value problems for Riemann–Liouville sequential fractional differential equations. Electron J Qual Theory Differ Equ. 2011;2011(87):1–13.
  • Wei Z, Li Q, Che J. Initial value problems for fractional differential equations involving Riemann–Liouville sequential fractional derivative. J Math Anal Appl. 2010;367(1):260–272.
  • Baleanu D, Mustafa OG, Agarwal RP. On lp-solutions for a class of sequential fractional differential equations. Appl Math Comput. 2011;218(5):2074–2081.
  • Bai C. Impulsive periodic boundary value problems for fractional differential equation involving Riemann–Liouville sequential fractional derivative. J Math Anal Appl. 2011;384(2):211–231.
  • Boutiara A, Etemad S, Alzabut J, et al. On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria. Adv Differ Equ. 2021;2021(1):1–23.
  • Ahmad B, Luca R. Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions. Appl Math Comput. 2018;339:516–534.
  • Ntouyas SK, Al-Sulami HH. A study of coupled systems of mixed order fractional differential equations and inclusions with coupled integral fractional boundary conditions. Adv Differ Equ. 2020;2020(1):1–21.
  • Abbas S, Benchohra M, Graef JR. Coupled systems of Hilfer fractional differential inclusions in Banach spaces. Commun Pure Appl Anal. 2018;17(6):2479.
  • Arena P, Caponetto R, Fortuna L, et al. Chaos in a fractional order duffing system. Proceedings ECCTD, Budapest: Vol. 1259, 1997. p. 1262.
  • Grigorenko I, Grigorenko E. Chaotic dynamics of the fractional Lorenz system. Phys Rev Lett. 2003;91(3):034101.
  • Faieghi M, Kuntanapreeda S, Delavari H, et al. Lmi-based stabilization of a class of fractional-order chaotic systems. Nonlinear Dyn. 2013;72(1):301–309.
  • Nyamoradi N, Javidi M, Ahmad B. Dynamics of SVEIS epidemic model with distinct incidence. Int J Biomath. 2015;8(06):1550076.
  • Carvalho A, Pinto CM. A delay fractional order model for the co-infection of malaria and HIV/AIDS. Int J Dyn Control. 2017;5(1):168–186.
  • Matar M, Abbas M, Alzabut J, et al. Investigation of the p-laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv Differ Equ. 2021;2021(1):1–18.
  • Matar MM, Abu Skhail ES, Alzabut J. On solvability of nonlinear fractional differential systems involving nonlocal initial conditions. Math Methods Appl Sci. 2021;44(10):8254–8265.
  • Matar MM, Alzabut J, Jonnalagadda JM. A coupled system of nonlinear Caputo–Hadamard Langevin equations associated with nonperiodic boundary conditions. Math Meth Appl Sci. 2021;44(3):2650–2670.
  • Ahmad B, Nieto JJ. Sequential fractional differential equations with three-point boundary conditions. Comput Math Appl. 2012;64(10):3046–3052.
  • Ahmad B, Nieto JJ. Boundary value problems for a class of sequential integrodifferential equations of fractional order. J Funct Spaces Appl. 2013;2013:1–8. DOI:10.1155/2013/149659.
  • Cole KS. Electric conductance of biological systems. Cold Spring Harbor symposia on quantitative biology. Vol. 1, Cold Spring Harbor Laboratory Press; 1933. p. 107–116.
  • Djordjević VD, Jarić J, Fabry B, et al. Fractional derivatives embody essential features of cell rheological behavior. Ann Biomed Eng. 2003;31(6):692–699.
  • Wang L, Li MY. Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells. Math Biosci. 2006;200(1):44–57.
  • Arafa A, Rida S, Khalil M. Fractional modeling dynamics of HIV and CD4+ T-cells during primary infection. Nonlinear Biomed Phys. 2012;6(1):1–7.
  • Wang S. Doubly nonlinear degenerate parabolic systems with coupled nonlinear boundary conditions. J Differ Equ. 2002;182(2):431–469.
  • Rossi JD. The blow-up rate for a system of heat equations with non-trivial coupling at the boundary. Math Meth Appl Sci. 1997;20(1):1–11.
  • Pao C. Finite difference reaction–diffusion systems with coupled boundary conditions and time delays. J Math Anal Appl. 2002;272(2):407–434.
  • Ahmad B, Alghanmi M, Alsaedi A, et al. Existence and uniqueness results for a nonlinear coupled system involving Caputo fractional derivatives with a new kind of coupled boundary conditions. Appl Math Lett. 2021;116:107018.
  • Hu S, Papageorgiou NS. Handbook of multivalued analysis. Dordrecht: Kluwer Academic Publishers; 1997.
  • Deimling K. Multivalued differential equations. Berlin: Walter de Gruyter; 1992.
  • Covitz HH, Nadler SB. Multi-valued contraction mappings in generalized metric spaces. Israel J Math. 1970;8(1):5–11.
  • Granas A, Dugundji J. Fixed point theory. 2013.
  • Yong Z, Jinrong W, Lu Z. Basic theory of fractional differential equations. 2016.
  • Losta A, Opial Z. Application of the kakutani-ky-fan theorem in the theory of ordinary differential equations or noncompact acyclic-valued map. Bull Acad Pol Sci, Sér Sci Math Astron Phys. 1965;13:781–786.
  • Kisielewicz M. Stochastic differential inclusions and applications. New York: Springer; 2013.
  • Castaing C, Valadier M. Convex analysis and measurable multifunctions. New York: Springer; 2008.