116
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

An Ensemble-Based Three-Dimensional Variational Assimilation Method for Land Data Assimilation

&
Pages 125-129 | Received 22 Feb 2009, Accepted 16 Apr 2009, Published online: 03 Jul 2015
 

Abstract

Land surface models are often highly nonlinear with model physics that contain parameterized discontinuities. These model attributes severely limit the application of advanced variational data assimilation methods into land data assimilation. The ensemble Kalman filter (EnKF) has been widely employed for land data assimilation because of its simple conceptual formulation and relative ease of implementation. An updated ensemble-based three-dimensional variational assimilation (En3-DVar) method is proposed for land data assimilation. This new method incorporates Monte Carlo sampling strategies into the 3-D variational data assimilation framework. The proper orthogonal decomposition (POD) technique is used to efficiently approximate a forecast ensemble produced by the Monte Carlo method in a 3-D space that uses a set of base vectors that span the ensemble. The data assimilation process is thus significantly simplified. Our assimilation experiments indicate that this new En3-DVar method considerably outperforms the EnKF method by increasing assimilation precision. Furthermore, computational costs for the new En3-DVar method are much lower than for the EnKF method.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.