343
Views
1
CrossRef citations to date
0
Altmetric
Articles

Residual life prediction for complex systems with multi-phase degradation by ARMA-filtered hidden Markov model

, , &
Pages 19-35 | Accepted 24 May 2017, Published online: 09 Jun 2017
 

Abstract

The performance of certain critical complex systems, such as the power output of ground photovoltaic (PV) modules or spacecraft solar arrays, exhibits a multi-phase degradation pattern due to the redundant structure. This pattern shows a degradation trend with multiple jump points, which are mixed effects of two failure modes: a soft mode of continuous smooth degradation and a hard mode of abrupt failure. Both modes need to be modeled jointly to predict the system residual life. In this paper, an autoregressive moving average model-filtered hidden Markov model is proposed to fit the multi-phase degradation data with unknown number of jump points, together with an iterative algorithm for parameter estimation. The comprehensive algorithm is composed of non-linear least-square method, recursive extended least-square method, and expectation–maximization algorithm to handle different parts of the model. The proposed methodology is applied to a specific PV module system with simulated performance measurements for its reliability evaluation and residual life prediction. Comprehensive studies have been conducted, and analysis results show better performance over competing models and more importantly all the jump points in the simulated data have been identified. Also, this algorithm converges fast with satisfactory parameter estimates accuracy, regardless of the jump point number.

Acknowledgments

We are thankful for the detailed comments and constructive suggestions provided by Dr. Zhisheng Ye, Prof. Min Xie, and Prof. Dawei Huang.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.