286
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

A meshless CFD approach for evolutionary shape optimization of bypass grafts anastomoses

, &
Pages 411-435 | Received 31 Oct 2007, Accepted 12 Nov 2008, Published online: 24 Mar 2009
 

Abstract

Improving the blood flow or hemodynamics in the synthetic bypass graft end-to-side distal anastomosis (ETSDA) is an important element for the long-term success of bypass surgeries. An ETSDA is the interconnection between the graft and the operated-on artery. The control of hemodynamic conditions through the ETSDA is mostly dictated by the shape of the ETSDA. Thus, a formal ETSDA shape optimization would serve the goal of improving the ETSDA flowfield. Computational fluid dynamics (CFD) is a convenient tool to quantify hemodynamic parameters; also, the genetic algorithm (GA) is an effective tool to identify the ETSDA optimal shape that modify those hemodynamic quantities such that the optimization objective is met. The present article introduces a unique approach where a meshless CFD solver is coupled to a GA for the purpose of optimizing the ETSDA shape. Three anastomotic models are optimized herein: the conventional ETSDA, the Miller cuff ETSDA and the hood ETSDA. Results demonstrate the effectiveness of the proposed integrated optimization approach in obtaining anastomoses optimal shapes.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.