332
Views
4
CrossRef citations to date
0
Altmetric
Articles

Identification of structural parameters including crack using one dimensional PZT patch model

&
Pages 1216-1241 | Received 13 May 2016, Accepted 18 Sep 2016, Published online: 08 Oct 2016
 

Abstract

This article presents a new concept of using the one-dimensional piezo-electric patch on beam model for structural identification (SI). A hybrid element constituted of one-dimensional beam element and a PZT sensor is used with reduced material properties. Accuracy of this element is first verified against a corresponding 3D finite element model. Then SI is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to impulse excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. Identified parameters involve stiffness, damping as well as the depth and location of crack in a beam. The validity of the proposed approach is proved by numerical studies on a beam, nine member frame and crack depth and location identification using various patch lengths. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The results show there is a significant improvement in identification accuracy compared to other methods. The proposed method is also successfully verified experimentally.

Notes

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.