494
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Inverse scattering problem for detecting a defect in a magnetoelastic layer

ORCID Icon &
Pages 1864-1894 | Received 17 Mar 2020, Accepted 18 Jan 2021, Published online: 09 Feb 2021
 

ABSTRACT

This work is devoted to studying a direct and inverse scattering problem for a magnetoelastic layer having a defect, in the frame of the electromagnetic theory. In terms of the displacement field over the defect's contour, a coupled system of boundary integral equations is formulated, for magnetically permeable and impermeable defects. To identify the position and size of the defect, an efficient numerical algorithm is developed by using the quasi-Newton iterative method. In order to check the influence of the magnetic field upon the scattering waves from the layer, a series of numerical examples is presented with different noise levels. The results showed that the magnetic field has a sensitive effect on the identification process when the external magnetic field increases, especially for the materials having a high magnetic permeability factor μr. Also, a special inverse problem for predicting the external applied magnetic field, upon a copper layer having a defect with various sizes, has been performed.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.