106
Views
2
CrossRef citations to date
0
Altmetric
Original research

Surface modified NIR magnetic nanoprobes for theranostic applications.

, , ORCID Icon & ORCID Icon
Pages 399-408 | Received 19 Jul 2020, Accepted 17 Nov 2020, Published online: 31 Dec 2020
 

ABSTRACT

Objectives: Near-Infrared based imaging modalities integrated with thermotherapy can facilitate detection of cancer at early stages and mediate high-resolution image-guided hyperthermia. In this work, fluorescent iron oxide nanoparticles (FIO) have been developed possessing deep tissue penetrable NIR imaging and site-specific magnetic hyperthermia characteristics for the elimination of cancer cells.

Methods: One-pot synthesis of amine-functionalized superparamagnetic iron oxide nanoparticles (HIO) were achieved using ethylenediamine (EDA) facilitated conjugation of indocyanine green (ICG) mediated by electrostatic interactions.

Results: EDA acts as a capping and reducing agent to direct the structural growth of hydrophilic Fe3O4 nanocrystals with high saturation magnetization, specific absorption rate, and T2 value of 118 emu/g, 329.8 ± 5.96 W/g, and 40.17 mM−1s−1, respectively. Here, Fe2+/Fe3+ of two was maintained to achieve magnetite nanocrystals contradictory to the gold standard ratio of 0.5 without additives for nucleation and growth. Developed FIO showed excellent cytocompatibility even at higher concentrations and on subjecting to magnetic hyperthermia reduced its survival percentage. FIO biodistribution in mice showed enhanced half-life than free ICG with preferential localization in the brain and liver.

Conclusion: Developed FIO using a facile technique is a potential clinical alternative for cellular tracking, imaging, and hyperthermia.

Reviewer disclosures

Peer reviewers on this manuscript have no relevant financial or other relationships to disclose.

Declaration of interest

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Supplemental material

Supplemental data for this article can be accessed here.

Additional information

Funding

This paper was funded by PG-Teaching [SR/NM/PG-04/2015]; Nano Mission [SR/NM/NS-1205/2015(G), FIST (SR/FST/LSI-622/2014)]; Department of Science and Technology, & Council of Scientific and Industrial Research for Senior Research fellowship [09/1095(0022)/18-EMR-I], Government of India.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.