475
Views
2
CrossRef citations to date
0
Altmetric
Review

The era of biofunctional biomaterials in orthopedics: what does the future hold?

, &
Pages 193-204 | Received 15 Nov 2017, Accepted 17 Jan 2018, Published online: 31 Jan 2018
 

ABSTRACT

Introduction: Titanium-based materials do not fulfill all of the requirements of orthopedic implants due to a mismatch in mechanical properties with bone which are prone to change during the course of bone growth. Biofunctional biomaterials are a new class of materials that show bioactivity and adaptability at any stage of bone growth.

Areas covered: Different biofunctional biomaterials have evolved over time that can enhance calcium phosphate (CaP) precipitation, stimulate osteogenic differentiation, and can control osteoblast gene expression. These materials include metals or metal alloys, ceramics, polymers and biocomposites. Similarly, naturally-inspired nanomaterials and nanometer surface featured modified materials can enhance bone growth if created to match bone’s unique micro to nano hierarchical structure. Nanoscale manipulation of existing biomaterials can incorporate antimicrobial properties which is desirable to prevent infection and failure of orthopedic devices.

Expert commentary: Recent research trends in biofunctional biomaterials have focused to, first, understand the bone growth mechanism and, then, mimic natural bone architecture using biomaterials. Therefore, an enhanced understanding of material properties and tissue engineering principles will lead the way forward designing biofunctional biomaterials. In the future, the role of biofunctional biomaterials and orthopedic sensors will be more pronounced in terms of musculoskeletal disease prevention, diagnosis, and treatment.

Declaration of Interest

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties. Peer reviewers on this manuscript have no relevant financial or other relationships to disclose.

Additional information

Funding

This paper is not funded

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.