251
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Modeling uptake of nanoparticles in multiple human cells using structure–activity relationships and intercellular uptake correlations

&
Pages 20-30 | Received 15 Jul 2016, Accepted 01 Nov 2016, Published online: 18 Nov 2016
 

Abstract

Biomedical applications of nanoparticles (NPs) are largely dependent on their cellular uptake potential that enables them to reach the specific targets in the body. Experimental determination of cellular uptake of diverse functionalized NPs in different human cell types is tedious, expensive and time intensive, hence compelling for alternative methods. We developed quantitative structure–activity relationship (QSAR) models for predicting uptake of functionalized NPs in multiple cell types in accordance with the OECD guidelines. The decision treeboost QSAR models precisely predicted uptake of 104 NPs in five different cell types yielding high R2 between experimental and model predicted values in the respective training (>0.966) and test (>0.914) sets. The cross-validation Q2 values ranged between 0.627 and 0.926. Low RMSE (<0.11) and MAE (<0.09) in test data emphasized for the usefulness of developed models for predicting new NPs, which outperformed the previous reports. Relevant structural features of NPs (modifier) that were responsible and influence the cellular permeability were identified. Here, we also attempted to develop intercellular uptake correlations based quantitative activity–activity relationship (QAAR) models for predicting cellular viability of NPs for all the cell types. The performances of all the 20 developed QAAR models were highly comparable with the QSAR models. The applicability domains of the developed models were defined using leverage method. The proposed QAAR models can be employed for extrapolating activity endpoints of NPs to either of the five cell types when the data for the other cell type are available. The developed models can be used as tools for screening new functionalized NPs for their cell-specific affinities prior to their biomedical applications.

Acknowledgements

The authors thank the CEO, ETRC, Lucknow and Director, CSIR-IITR, Lucknow for their interest in this work.

Declaration of interest

The authors declare no competing financial interest. No financial support from any source was received for this work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.