593
Views
87
CrossRef citations to date
0
Altmetric
Original Article

Probing the toxicity of nanoparticles: a unified in silico machine learning model based on perturbation theory

, , &
Pages 891-906 | Received 17 Mar 2017, Accepted 08 Sep 2017, Published online: 22 Sep 2017
 

Abstract

Nanoparticles (NPs) are part of our daily life, having a wide range of applications in engineering, physics, chemistry, and biomedicine. However, there are serious concerns regarding the harmful effects that NPs can cause to the different biological systems and their ecosystems. Toxicity testing is an essential step for assessing the potential risks of the NPs, but the experimental assays are often very expensive and usually too slow to flag the number of NPs that may cause adverse effects. In silico models centered on quantitative structure–activity/toxicity relationships (QSAR/QSTR) are alternative tools that have become valuable supports to risk assessment, rationalizing the search for safer NPs. In this work, we develop a unified QSTR-perturbation model based on artificial neural networks, aimed at simultaneously predicting general toxicity profiles of NPs under diverse experimental conditions. The model is derived from 54,371 NP-NP pair cases generated by applying the perturbation theory to a set of 260 unique NPs, and showed an accuracy higher than 97% in both training and validation sets. Physicochemical interpretation of the different descriptors in the model are additionally provided. The QSTR-perturbation model is then employed to predict the toxic effects of several NPs not included in the original dataset. The theoretical results obtained for this independent set are strongly consistent with the experimental evidence found in the literature, suggesting that the present QSTR-perturbation model can be viewed as a promising and reliable computational tool for probing the toxicity of NPs.

Disclosure statement

The authors declare no competing financial interest.

Additional information

Funding

This work received financial support from Fundação para a Ciência e a Tecnologia (FCT/MEC) through national funds, and co-financed by the European Union (FEDER funds) under the Partnership Agreement PT2020, through projects UID/QUI/50006/2013, POCI/01/0145/FEDER/007265, NORTE-01-0145-FEDER-000011 (LAQV@REQUIMTE), and the Interreg SUDOE NanoDesk (SOE1/P1/E0215; UP). RC acknowledges also FCT and the European Social Fund for financial support (Grant SFRH/BPD/80605/2011). To all financing sources the authors are greatly indebted.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.