125
Views
10
CrossRef citations to date
0
Altmetric
Article

Comparison of acute to chronic ratios between silver and gold nanoparticles, using Ceriodaphnia dubia

, , , &
Pages 1127-1139 | Received 10 Oct 2016, Accepted 26 Oct 2017, Published online: 01 Dec 2017
 

Abstract

As integration of nanoparticles (NPs) into products becomes more common, the need to address the paucity of chronic hazard information for aquatic environments required to determine risk potential increases. This study generated acute and chronic toxicity reference values for Ceriodaphnia dubia exposed to 20 and 100 nm silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) to generate and evaluate potential differences in acute-to-chronic ratios (ACR) using two different feeding methods. A modified feeding procedure was employed alongside the standard procedures to investigate the influence of food on organism exposure. An 8-h period before food was added allowed direct organism exposure to NP dispersions (and associated ions) without food-to-NP interactions. The AgNPs [chronic lethal median concentrations (LC50) between 18.7 and 31.9 µg/L] were substantially more toxic than AuNPs (LC50 = 21 507 to >26 384 µg/L). The modified chronic testing method resulted in greater sensitivity in AgNPs exposures. However, the modified feeding ration had less of an effect in exposures to the larger (100 nm) AgNPs compared to smaller particles (20 nm). The ACRs for AgNPs using the standard feeding ration were 1.6 and 3.5 for 20 nm and 100 nm, respectively. The ACRs for AgNPs using the modified feeding ration were 3.4 and 7.6 for 20 nm and 100 nm NPs, respectively. This supports that the addition of the standard feeding ration decreases C. dubia chronic sensitivity to AgNPs, although it must also be recognized organisms may be sensitized due to less access to food. The ACRs for 20 nm and 100 nm AuNPs (standard ration only) were 4.0 and 3.0, respectively. It is important to also consider that dissolved Ag+ ions are more toxic than AgNPs, based on both acute toxicity values in the cited literature and chronic toxicity thresholds generated in this study that support existing thresholds that Ag+ are likely protective of AgNPs effects.

View correction statement:
Corrigendum

Acknowledgments

We appreciate the laboratory assistance from researchers Christopher Detzel and Matthew Hull at Nanosafe for the preparation of the gold nanoparticles.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Permission was granted by the chief of engineers to publish this material. The tests and data presented, unless otherwise noted, were obtained from research funded under the US Army’s Environmental Quality Technology Research Program (E. Ferguson, Technical Director).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.