348
Views
22
CrossRef citations to date
0
Altmetric
Article

Dissolution and bandgap paradigms for predicting the toxicity of metal oxide nanoparticles in the marine environment: an in vivo study with oyster embryos

, , , &
Pages 63-78 | Received 16 Aug 2017, Accepted 14 Dec 2017, Published online: 20 Dec 2017
 

Abstract

Dissolution and bandgap paradigms have been proposed for predicting the ability of metal oxide nanoparticles (NPs) to induce oxidative stress in different in vitro and in vivo models. Here, we addressed the effectiveness of these paradigms in vivo and under conditions typical of the marine environment, a final sink for many NPs released through aquatic systems. We used ZnO and MnO2 NPs as models for dissolution and bandgap paradigms, respectively, and CeO2 NPs to assess reactive oxygen radical (ROS) production via Fenton-like reactions in vivo. Oyster embryos were exposed to 0.5–500 μM of each test NP over 24 h and oxidative stress was determined as a primary toxicity pathway across successive levels of biological complexity, with arrested development as the main pathological outcome. NPs were actively ingested by oyster larvae and entered cells. Dissolution was a viable paradigm for predicting the toxicity of NPs in the marine environment, whereas the surface reactivity based paradigms (i.e. bandgap and ROS generation via Fenton-like reaction) were not supported under seawater conditions. Bio-imaging identified potential cellular storage-disposal sites of solid particles that could ameliorate the toxicological behavior of non-dissolving NPs, whilst abiotic screening of surface reactivity suggested that the adsorption-complexation of surface active sites by seawater ions could provide a valuable hypothesis to explain the quenching of the intrinsic oxidation potential of MnO2 NPs in seawater.

Acknowledgments

The authors thank Lina Gunnarsson and Anke Lange for training and advice in RT qPCR analysis, Hong Chang for technical support in TEM-EDS, and Cameron Hird for help in sampling.

Disclosure statement

The authors report no conflicts of interest.

Additional information

Funding

This project was funded by the European Union Horizon 2020 research and innovation program under Marie Sklodowska-Curie grant agreement No 655134 and NERC FENAC access grant No PR120021. TG acknowledges support from NERC grant NE/N006178/1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.