791
Views
45
CrossRef citations to date
0
Altmetric
Article

Macrophage polarization and activation at the interface of multi-walled carbon nanotube-induced pulmonary inflammation and fibrosis

&
Pages 153-168 | Received 23 Aug 2017, Accepted 04 Jan 2018, Published online: 16 Jan 2018
 

Abstract

Pulmonary exposure to carbon nanotubes (CNTs) induces fibrosing lesions in the lungs that manifest rapid-onset inflammatory and fibrotic responses, leading to chronic fibrosis in animals and health concerns in exposed humans. The mechanisms underlying CNT-induced fibrogenic effects remain undefined. Macrophages are known to play important roles in immune regulation and fibrosis development through their distinct subsets. Here we investigated macrophage polarization and activation in mouse lungs exposed to multi-walled CNTs (MWCNTs). Male C57BL/6J mice were treated with MWCNTs (XNRI MWNT-7) at 40 μg per mouse (∼1.86 mg/kg body weight) by oropharyngeal aspiration. The treatment stimulated prominent acute inflammatory and fibrotic responses. Moreover, it induced pronounced enrichment and polarization of macrophages with significantly increased M1 and M2 populations in a time-dependent manner. Induction of M1 polarization was apparent on day 1 with a peak on day 3, but declined rapidly thereafter. On the other hand, the M2 polarization was induced on day 1 modestly, but was remarkably elevated on day 3 and maintained at a high level through day 7. M1 and M2 macrophages were functionally activated by MWCNTs as indicated by the expression of their distinctive functional markers, such as iNOS and ARG1, with time courses parallel to M1 and M2 polarization, respectively. Molecular analysis revealed MWCNTs boosted specific STAT and IRF signaling pathways to regulate M1 and M2 polarization in the lungs. These findings suggest a new mechanistic connection between inflammation and fibrosis induced by MWCNTs through the polarization and activation of macrophages during MWCNT-induced lung pathologic response.

Disclosure statement

The authors declare there are no competing financial interests.

The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health.

Additional information

Funding

This work was funded to Q.M. by the Health Effects Laboratory Division and the Nanotechnology Research Center at National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, USA. No. 7939050W

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.