178
Views
7
CrossRef citations to date
0
Altmetric
Article

Comparative study of dissolved and nanoparticulate Ag effects on the life cycle of an estuarine meiobenthic copepod, Amphiascus tenuiremis

, , &
Pages 375-389 | Received 14 Jan 2018, Accepted 09 Mar 2018, Published online: 19 Mar 2018
 

Abstract

Many nanotoxicological studies have assessed the acute toxicity of nanoparticles (NPs) at high exposure concentrations. There is a gap in understanding NP chronic environmental effects at lower exposure concentrations. This study reports life-cycle chronic toxicity of sublethal exposures of polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) relative to dissolved silver nitrate (AgNO3) for the estuarine meiobenthic copepod, Amphiascus tenuiremis, over a range of environmentally relevant concentrations, i.e., 20, 30, 45, and 75 µg-Ag L−1. A concentration-dependent increase in mortality of larval nauplii and juvenile copepodites was observed. In both treatment types, significantly higher mortality was observed at 45 and 75 µg-Ag L−1 than in controls. In AgNO3 exposures, fecundity declined sharply (1.8–7 fold) from 30 to 75 µg Ag L−1. In contrast, fecundity was not affected by PVP-AgNPs exposures. A Leslie matrix population-growth model predicted sharply 60–86% of decline in overall population sizes and individual life-stage numbers from 30–75 µg-Ag L−1 as dissolved AgNO3. In contrast, no population growth suppressions were predicted for any PVP-AgNPs exposures. Slower release of dissolved Ag from PVP-AgNPs and/or reduced Ag uptake in the nanoform may explain these sharp contrasts in copepod response.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the contents and writing of the paper.

Additional information

Funding

This research was supported by the United States National Science Foundation [NSF1437307].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.