315
Views
11
CrossRef citations to date
0
Altmetric
Article

The nanomaterial-induced bystander effects reprogrammed macrophage immune function and metabolic profile

ORCID Icon, &
Pages 1137-1155 | Received 29 May 2020, Accepted 25 Aug 2020, Published online: 11 Sep 2020
 

Abstract

Bystander effects in biological systems are the responses shown by nontargeted neighboring cells, and critical to the bio-nano interface interactions. In addition to direct effects, bystander effects also determine the design, applications and safety of nanomaterials, although the related information of nanomaterial-induced bystander effects remain largely unknown. A coculture system of A549 and THP-1 was established to mimic the lung microenvironment to study the bystander effects of WS2 nanosheets (representative transition-metal dichalcogenide nanosheets) on microenvironment macrophages during the inhalation exposure or the nanomaterial biomedical application in the lung. Lung cells exposed to WS2 nanosheet resulted in an increase in reactive oxygen species and the depolarization of mitochondrial membrane potential in neighboring macrophages. Bystander exposure also induced macrophage polarization toward the anti-inflammatory M2 phenotype, which is adverse to disease therapy. Metabolomics showed that WS2 nanosheets disturbed the energy metabolism and amino acid metabolism of macrophages, consistent with the metabolic characteristics of M2 macrophages. Nitric oxide-transforming growth factor-β1 played an important mediator in the bystander effects. Importantly, WS2 nanosheet bystander exposure affected macrophage phagocytosis and migration and altered the macrophage immune response to endotoxin. This study improves the current understanding of bio-nano interactions and highlights the importance of neighboring cell responses, allowing us to use the maximum benefits of nanomaterials while limiting their adverse bystander effects.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was financially supported by the National Natural Science Foundation of China [grant Nos. 21677080, 21722703, and 31770550] and a 111 program [grant No. T2017002].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.