262
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Algal extracellular polymeric substances (algal-EPS) for mitigating the combined toxic effects of polystyrene nanoplastics and nano-TiO2 in Chlorella sp.

, , &
Pages 143-156 | Received 12 Oct 2022, Accepted 08 Feb 2023, Published online: 14 Feb 2023
 

Abstract

The continuous release of nanoparticles and nanoplastics into the marine environment necessitates the examination of their combined effects in marine organisms. Natural Organic Matter (NOM) can significantly influence the behavior of nanomaterials in the marine environment. The present study explores the effects of algal Extracellular Polymeric Substances (EPS) in reducing the combined toxic effects of three different polystyrene nanoplastics (PSNPs)— aminated (NH2-PSNPs), carboxylated (COOH-PSNPs), and plain PSNPs — and P25 titanium dioxide nanoparticles (Nano-TiO2) towards the marine alga, Chlorella sp. Two doses (0.25 and 2.5 mg/L) of nano-TiO2 mixed with the PSNPs (1 mg/L) were employed. The COOH-PSNPs with 2.5 mg/L nano-TiO2 exhibited higher growth inhibition toward algal cells. Addition of algal EPS to the mixture of NMs decreased the negative effect significantly. The mean hydrodynamic diameter increased significantly from 666 to 797 nm and 1248 to 3589 nm at concentrations 0.25 and 2.5 mg/L, respectively when the mixtures of nano-TiO2 and COOH-PSNPs were incubated with the algal EPS. In comparison to the pristine NMs, the EPS-NMs were found to significantly reduce the superoxide and hydroxyl radical production. The results were further validated with the estimation of lipid peroxidation (LPO), esterase activity, photosynthetic efficiency, and membrane permeability in the cells. The major outcomes from this study highlight the role of algal EPS in significantly reducing the toxic impact of binary mixture of NMs in marine organisms.

Acknowledgments

The authors would like to acknowledge the Vellore Institute Technology (VIT), Vellore, India for providing the Transmission Electron Microscopy facility used in this study.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials. All data will be made available on request.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.