158
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Residual velocity for the truncated ogival-nose projectile into stiffened plates

, , &
Pages 636-644 | Received 06 Jan 2015, Accepted 13 Apr 2015, Published online: 12 May 2015
 

Abstract

Residual velocity of the projectile plays an importance role in evaluating the resistance of the target. A mathematical model of the truncated ogival-nose projectile penetrating into the stiffened plates is designed to describe the destruction according to the momentum conservation theorem, and relationships between the residual velocity and penetration locations of stiffened plates are obtained during penetrating. The destruction forms of stiffened plates include slug and petal, which contain a base plate, transverse stiffeners and longitudinal stiffeners. By analysing the model, we obtained that the momenta on the petal are much greater than those of the slug, and the petal momentum of the stiffener is much greater than that of the base plate. When the petal momentum of the stiffener reaches the maximum, the displacement of the projectile is only related to its own shape. As the truncation circle is tangent to the axis of the stiffener, the velocity loss of the projectile consumed by the stiffener reaches the maximum. A series of experiments is carried out to explore the impact characteristics of stiffened plates struck by the ogival-nose projectile, whose initial velocities range from 546 to 618 m/s. Residual velocities of nine different locations are measured, and the data are in good agreement with the calculation results of the model.

Acknowledgements

The authors sincerely thank the reviewers for several useful suggestions for improving the manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.