195
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Cellular automata approach for modelling climate change impact on water resources

ORCID Icon, , &
Pages 21-36 | Received 12 Jan 2017, Accepted 14 May 2017, Published online: 29 May 2017
 

ABSTRACT

In this work, we consider the cellular automata (CA) approach for modelling the climate change impact on water resources. This consists in: constructing a CA model that describes the water cycle dynamics taking into account physical terrain attributes and climatic constraints; coupling the CA model with climate projection scenarios for a considered region as input data; determining and analysing in output the variations of the underground, surface and evaporated water. We present these variations per time interval and per zone of influence. As an application, we consider simulation for a basin in northern Morocco using a simulation software we have designed in Java Object Oriented Programming.

We consider cellular automata (CA) approach for modelling climate change impact on water resources. This consists in, first constructing a CA model that describes the water cycle dynamics taking into account physical terrain attributes and climatic constraints, then coupling the CA model with climate projection scenarios for a considered region as input data, and we determine and analyze in output the variations of the water resources (groundwater and surface water). We present these variations per time interval and per zone of influence. The approach application is for a basin in northern Morocco for which we use simulation software that we have designed in Java Object Oriented Programming. Digital terrain model, geological map and satellites image are used for input data.

Graphical Abstract

Notes

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work has been supported by the project PPR2-OGI-Env, MESRSFC, CNRST and the international network TDS, Academy Hassan II of Sciences and Techniques of Morocco [grant number PPR2/2016/79].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.