340
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES

Asexual reproduction and somatic growth of the fissiparous sea star Allostichaster polyplax in New Zealand

, &
Pages 85-95 | Received 26 Jan 2015, Accepted 05 Aug 2015, Published online: 25 Nov 2015
 

ABSTRACT

Allostichaster polyplax is a fissiparous (capable of reproducing asexually by fission) sea star found in intertidal and shallow subtidal habitats in New Zealand and Australia. A localized population of A. polyplax occurred at a density of 2.7 individuals m−2 in an intertidal boulder field at Otago Harbour, South Island, New Zealand. The percentage of sea stars undergoing fission, recorded from January 2010 to March 2011, peaked in January (midsummer) in both years. The frequency of fission decreased for larger sea stars (mean arm length, R > 25 mm), suggesting an ontogenic shift from asexual to sexual reproduction. Effects of fission (i.e. arm regeneration) and food availability (small gastropods) on growth, storage and sexual reproduction were examined in a factorial laboratory experiment. There was no effect of arm regeneration or food on total arm growth. Storage capacity, measured as pyloric caeca index (PCI), was greater in full-armed than regenerating sea stars, and greater in fed than starved individuals. Fed individuals had a similar PCI as field-collected ones. Gonads were observed in two individuals (males) in the full-armed and fed treatment. Fission did not occur during the experiment. Feeding rate on snails was greater for full-armed than regenerating sea stars. Water temperature had a weak positive effect on the feeding rate of regenerating sea stars. Our findings suggest that fission and subsequent growth of ramets can sustain demographically stable and geographically isolated populations of A. polyplax. The role of sexual reproduction in population dynamics and connectivity of this species (and fissiparous sea stars in general) remains equivocal and requires further research on genetic differentiation within and among populations.

RESPONSIBLE EDITOR:

Acknowledgements

We thank Beverly Dickson for laboratory set up, and Megan Deans for field and laboratory assistance.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

Funding for this project was provided by the Department of Marine Science, University of Otago, Dunedin, to Michael F. Barker and a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada to Robert E. Scheibling.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.