669
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Inclined slicing and weld-deposition for additive manufacturing of metallic objects with large overhangs using higher order kinematics

&
Pages 99-108 | Received 11 Feb 2016, Accepted 06 Mar 2016, Published online: 04 Apr 2016
 

ABSTRACT

This paper presents an automated tool path planning for deposition of overhanging features using GMAW-based weld-deposition. Overhanging features, although possible to a certain extent in power-bed process like SLS, remain a challenge in deposition-based processes. Deposition processes like weld-deposition-based AM realised smaller overhangs by exploiting the inherent overhang capability of the weld bead; but the same cannot be applicable for complex geometries with large overhangs. This paper explains an efficient way of depositing the overhanging features through weld-deposition, without use of supports, based on inclined slicing and deposition. This approach uses higher order kinematics, that is, adding extra degrees of mobility to workpiece. The methodology used for realising these inclined slices based on an in-house MATLAB code has also been presented. While this concept is implemented in the context of weld-deposition, it can be extended for any other metallic deposition processes as well.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.