2,158
Views
56
CrossRef citations to date
0
Altmetric
Original papers

Update on UHMWPE research From the bench to the bedside

, , &
Pages 832-840 | Received 22 Oct 2007, Accepted 13 Feb 2008, Published online: 08 Jul 2009
 

Abstract

Ultra-high molecular weight polyethylene (UHMWPE) is the key material for achieving excellent long-term results in total joint arthroplasties. Despite the fact that there has been a substantial amount of research and development over the years, new aspects of this material are still controversial and the most recent innovations have had a variable reception regarding clinical use. Advancements in conventional UHMWPE in the 1990s (nitrogen atmosphere irradiation, barrier package) were further improved by introduction of first-generation crosslinked polyethylene, as seen both from laboratory findings and clinical results. However, while clinical data on first-generation highly crosslinked polyethylene (HXLPE) showed reduced wear in the medium-term, academic and industrial research have helped to refine the material further, to overcome criticisms regarding residual oxidation and potential material fracture. Present concerns, although less nowadays, relate to the post-irradiation techniques used to stabilize the crosslinked polyethylene, namely annealing and remelting. Current topics of research interest include in vivo oxidation, second-generation highly crosslinked polyethylene, vitamin E doped or blended polyethylene, fracture mechanics, and consequences of wear. Some of these improvements derived from recent research are already available to the orthopedic community, and others will appear in the next few years. This review gives an overview of these topics, and the latest advancements are described in detail with a view to help the orthopedic surgeon make scientifically sound decisions when selecting material for total-joint implants. We conclude the review by affirming that today's state-of-the-art material is no longer conventional UHMWPE, but HXLPE.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.