336
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Second-order small perturbation method for transmission from dielectric rough surfaces

, , , , , & show all
Pages 668-689 | Received 22 Jun 2011, Accepted 18 Sep 2011, Published online: 21 Oct 2011
 

Abstract

Although the small perturbation method (SPM) for rough surface scattering has been studied extensively in problems in optics, remote sensing and propagation, there are fewer studies on rough surface transmission by the SPM. In this paper, from Huygens’ principle and the extinction theorem, the SPM is used to derive the transmitted field to the second order, and expressions for the bidirectional transmission coefficient and the total surface transmittance to the second order are developed for the random rough surface. The refined expressions can be applied to the situations where the transmission characteristics of a random rough surface need to be more accurately calculated. For example, to calculate the brightness temperature of stratified rough media by the incoherent method, we have to know the bidirectional transmission coefficient or transmittance of random rough surface as accurately as possible. The accuracy of the presented expressions is verified through the conservation of energy. It is shown that the transmission characteristics calculated by SPM to the first order violate conservation of energy, whereas solutions to the second order conform to energy conservation much better. This is particularly important for the calculation of transmittance or emissivity.

Acknowledgements

This paper is supported in part by the National Key Laboratory Foundation of China 9140C5305011004, the National Science Foundation of China 40971185, 40904051, and the National High Technology Research and Development Program 2010AA122200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.