180
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Chiral and non-centrosymmetric effects on the nonlinear wave propagation characteristics of architectured cellular materials

&
Pages 1694-1712 | Received 03 Sep 2019, Accepted 15 Sep 2020, Published online: 19 Oct 2020
 

ABSTRACT

In the current work, we study the role of chirality and non-centrosymmetry on the nonlinear wave propagation characteristics of periodic architectured media. The considered nonlinearities arise from the higher-order inner element kinematics of the periodic media and are therefore directly related to its structural pattern. Regarding centrosymmetric designs, the frequency corrections obtained -in the context of the Lindstedt-Poincare method- suggest that chiral architectures are more sensitive to inner kinematic nonlinearities than well-known, achiral lattice designs. In particular, for hexachiral lattice designs, non-negligible frequency corrections are obtained, not only for the primal eigenmode, but also for higher-order modes, extensively modifying the linear band diagram structure. To the contrary, for achiral, triangular and square lattice designs, inner kinematic nonlinearities mainly influence the primal, lowest eigenmode, with the higher-order modes to remain practically unaffected. Non-centrosymmetric inner designs modify the linear and nonlinear wave propagation material attributes both for chiral and achiral lattice patterns. However, the frequency ranges affected are strongly lattice dependent, with hexachiral and triangular lattices to be primarily influenced in their high frequency range, contrary to square lattices, which are mainly affected in their low frequency region.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.