269
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Electromagnetic characterization of strong-coupled Omega-type bianisotropic metamaterials using the state transition matrix method

, , , &
Pages 2021-2039 | Received 04 Oct 2020, Accepted 22 Jun 2021, Published online: 22 Jul 2021
 

Abstract

A feasible extraction procedure is proposed to retrieve the diagonal tensor elements of the permittivity and permeability, and the magnetoelectric coupling coefficient of Omega-type biansiotropic metamaterials (MMs). The procedure is based on the state transition matrix approach and uses non-iterative closed-form expressions between constitutive parameters and scattering (S-) parameters to achieve such determination using S-parameters for normal incidence and oblique incidence of TE and TM modes (a desirable feature from practical point of view). S-parameter simulations of a bianisotropic MM slab constructed by edge-coupled resonators are performed using a 3D electromagnetic simulator program and used to validate the proposed procedure and compare its accuracy against previously developed extraction procedures. The effects of incidence angle, S-parameters' noise, and dimensional variations (fabrication tolerances) on the extracted parameters of the examined MM slab are investigated.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.