554
Views
7
CrossRef citations to date
0
Altmetric
PHYSIOLOGY & NUTRITION

Transcranial direct current stimulation and repeated sprint ability: No effect on sprint performance or ratings of perceived exertion

, , , , ORCID Icon, , ORCID Icon & ORCID Icon show all
 

ABSTRACT

The role of transcranial direct current stimulation (tDCS) as an ergogenic aid is receiving attention from scientists to optimize sport performance. Most studies have examined the effects of tDCS on endurance performance during continuous tasks, while the effect of tDCS on high-intensity intermittent tasks has been less investigated. Therefore, this study aimed to explore the acute effects of tDCS on sprint performance and ratings of perceived exertion (RPE) during a repeated sprint ability (RSA) task. Twenty-five healthy males (age: 22.0 ± 2.5 years) participated in a randomized crossover study consisting of three experimental sessions (anodal, cathodal or sham tDCS) separated by 1 week. Each session consisted of (I) tDCS protocol (15 min at 2 mA applied over the dorsolateral prefrontal cortex [DLPFC]), (II) warm-up and (III) RSA task (ten 30-m running sprints separated by 30 s). Total time and RPE values were recorded for each sprint. The two-way ANOVA applied on sprint time did not reveal a significant main effect of tDCS condition (p = .200) neither a significant tDCS condition × number of sprint interaction (p = .716). Similarly, no significant differences were observed for the fatigue index (p = .449), RSAmean (p = .200) or RPE after each sprint (p range = .116–.890). The magnitude of the differences between the tDCS conditions ranged from negligible to small (effect sizes ≤ 0.33). These results suggest that the application of tDCS over the DLPFC is not effective to increase sprint performance or reduce RPE during a RSA task.

HIGHLIGHTS

  • Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that could modulate neuromuscular performance.

  • This study aimed to explore the short-term effects of tDCS on sprint performance and ratings of perceived exertion (RPE) during a repeated sprint ability (RSA) task.

  • The application of either ANODAL or CATHODAL tDCS over the DLPFC for 15 minutes did not affect the sprint time of single repeated sprints or the overall metrics of RSA performance (RSAmean and fatigue index).

  • The application of either ANODAL or CATHODAL tDCS over the DLPFC for 15 minutes did not affect the ratings of perceived exertion measured during the repeated sprints task.

Acknowledgments

We would like to thank all the subjects who selflessly participated in the study.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.