261
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sex differences in the intensity–duration relationships of the severe- and extreme-intensity exercise domains

ORCID Icon, , , , &
 

ABSTRACT

Extreme-intensity exercise is described by W′ext (analogous to J′ for isometric exercise) that is smaller than W′ of severe-intensity exercise (W′sev) in males. Sex differences in exercise tolerance appear to diminish at near-maximal exercise, however, there is evidence of greater contributions of peripheral fatigue (i.e. potentiated twitch force; Qpot) in males during extreme-intensity exercise. Therefore, the current study tested the hypotheses that J′ext would not be different between males and females, however, males would exhibit a greater reduction in neuromuscular function (i.e. maximal voluntary contraction, MVC; Qpot) following extreme-intensity exercise. Seven males and 7 females completed three severe- (Tlim: 2–4 min, S3; 5–8 min, S2; 9–15 min, S1) and three extreme-intensity (70, 80, 90%MVC) knee-extension bouts. MVC and Qpot relative to baseline were compared at task failure and at 150 s of recovery. J′ext was significantly less than J′sev in males (2.4 ± 1.2kJ vs 3.9 ± 1.3kJ; p = 0.03) and females (1.6 ± 0.8kJ vs 2.9 ± 1.7kJ; p = 0.05); however, there were no sex differences in J′ext or J′sev. MVC (%Baseline) was greater at task failure following extreme-intensity exercise (76.5 ± 20.0% vs 51.5 ± 11.5% in males, 75.7 ± 19.4% vs 66.7 ± 17.4% in females), but was not different at 150 s of recovery (95.7 ± 11.8% in males, 91.1 ± 14.2% in females). Reduction in Qpot, however, was greater in males (51.9 ± 16.3% vs 60.6 ± 15.5%) and was significantly correlated with J′ext (r2 = 0.90, p < 0.001). Although there were no differences in the magnitude of J′ext, differences in MVC and Qpot are evidence of sex-specific responses and highlight the importance of appropriately characterizing exercise intensity regarding exercise domains when comparing physiological responses in males and females.

Highlights

  • We have previously shown evidence that extreme-intensity dynamic exercise is described by W′ext in males and smaller than W′sev. We currently tested for potential sex differences in J′ext (isometric analogue to W′) and neuromuscular responses (i.e. maximal voluntary contraction, MVC; potentiated twitch force, Qpot) during extreme-intensity exercise.

  • J′ext and extreme-intensity exercise tolerance was not different between males and females. The reduction in MVC was not different across extreme-intensity exercise across males and females, whereas the reduction in Qpot was greater in males following all extreme-intensity exercises, although not after exercise at 90%MVC.

  • Together, although extreme-intensity exercise tolerance is not different, these data highlight differences in the contributing mechanisms of fatigue during severe- and extreme-intensity exercise between males and females.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

All data supporting the results presented in the manuscript are included in the manuscript figures as values of n were ≤ 30. The data that support the findings of this study are available on request from the corresponding author.

Additional information

Funding

Authors were funded by the National Institutes of Health (AR56950 to A. M. A.; HLO7111 to S. M. H.) and NASA Cooperative Agreement (NNX16A069A to K. D. D.).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.