402
Views
8
CrossRef citations to date
0
Altmetric
Review

Pathways to pulmonary hypertension in sickle cell disease: the search for prevention and early intervention

&
Pages 875-890 | Received 14 Apr 2017, Accepted 04 Aug 2017, Published online: 23 Aug 2017
 

ABSTRACT

Introduction: Pulmonary hypertension (PH) develops in a significant number of patients with sickle cell disease (SCD), resulting in increased morbidity and mortality. This review focuses on PH pathophysiology, risk stratification, and new recommendations for screening and treatment for patients with SCD.

Areas covered: An extensive PubMed literature search was performed. While the pathophysiology of PH in SCD is yet to be fully deciphered, it is known that the etiology is multifactorial; hemolysis, hypercoagulability, hypoxemia, ischemic-reperfusion injury, oxidative stress, and genetic susceptibility all contribute in varying degrees to endothelial dysfunction. Hemolysis, in particular, seems to play a key role by inciting an imbalance in the regulatory axis of nitric oxide and arginine metabolism. Systematic risk stratification starting in childhood based on clinical features and biomarkers that enable early detection is necessary. Multi-faceted, targeted interventions, before irreversible vasculopathy develops, will allow for improved patient outcomes and life expectancy.

Expert commentary: Despite progress in our understanding of PH in SCD, clinically proven therapies remain elusive and additional controlled clinical trials are needed. Prevention of disease starts in childhood, a critical window for intervention. Given the complex and multifactorial nature of SCD, patients will ultimately benefit from combination therapies that simultaneously targets multiple mechanisms.

Declaration of interest

Dr. Morris is the inventor or co-inventor of several UCSF-Benioff Children’s Hospital Oakland patents/patent-pending applications that include nutritional supplements, and biomarkers of cardiovascular disease related to arginine bioavailability, is an inventor of an Emory University School of Medicine patent application for a nutritional supplement, is a consultant for Pfizer and Calithera Biosciences, Inc, and has received research support from MAST Therapeutics, the United States Food and Drug Administration and the National Institutes of Health. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Additional information

Funding

This paper was not funded.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.