758
Views
1
CrossRef citations to date
0
Altmetric
Review

Microbial modulation of the gut microbiome for treating autoimmune diseases

&
Pages 985-996 | Received 08 Jun 2018, Accepted 24 Aug 2018, Published online: 03 Sep 2018
 

ABSTRACT

Introduction: Many studies have shown the relationship between autoimmune diseases and the gut microbiome in humans: those with autoimmune conditions display gut microbiome dysbiosis. The big question that needs to be addressed is if restoring eubiosis of the gut microbiota can help suppress the autoimmune condition by activating various immune regulatory mechanisms. Inducing these self-healing mechanisms should prolong good health in affected individuals.

Area covered: Here, we review the available clinical and preclinical studies that have used selective bacteria for modulating gut microbiota for treating autoimmune diseases. The potential bacterial candidates and their mechanism of action in treating autoimmune diseases will be discussed. We searched for genetically modified and potential probiotics for diseases and discuss the most likely candidates.

Expert commentary: To achieve eubiosis, manipulation of the gut microbiota must occur in some form. Several approaches for modulating gut microbiota include prebiotic diets, antimicrobial interventions, fecal microbiota transplants, and selective probiotics. One novel approach showing promising results is the use of selective bacterial candidates to modulate microbial composition. Use of single microbe for treatment has an advantage as compared to multi-species as microbes grow at different rates and if needed, a single microbe is easy to target.

Acknowledgments

Veena Taneja is supported by grants from the Department of Defense (W81XWH-15-1-0213), USA, and the Department of Development, Mayo Clinic.

Declaration of interest

The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Reviewer disclosures

Peer reviewers on this manuscript have no relevant financial or other relationships to disclose.

Additional information

Funding

This paper was in part supported by the Mayo Clinic, Department of Development and the U.S. Department of Defense [W81XWH-15-1-0213].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.