80
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Modelling of adequate pretwist for obtaining straight timber

, , , &
Pages 76-84 | Received 24 Mar 2006, Published online: 19 Feb 2007
 

Abstract

Wood in general and wooden studs in particular are often distorted owing to uneven shrinkage during the drying process in the sawmill. Twist is often the most detrimental of all types of distortion, and it is caused by spiral grain in combination with variations in moisture content. For sawmills, the objective is to produce dried, straight boards, and one method of dealing with boards with excessive spiral grain is to sort them out and then dry them in a pretwisted position to obtain straight boards after drying. A model using the finite element (FE) method for the simulation of drying twist distortions was first calibrated against laboratory experiments in which boards were dried with and without restraints and pretwists. After the calibration, the FE results were compared with industrial test results for boards that were dried without restraints or with restraints with zero pretwist, i.e. straight restraints. The FE model used an elastic–ideally plastic material model to obtain permanent deformations. The calibration was to set the yield stresses so that there was a good match between FE results and results from the laboratory experiments. The comparison between the industrial test results and the FE results showed that the FE model is capable of realistic simulations of drying boards with and without restraints and presumably also pretwists.

The authors express their gratitude to Formas (the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning), the European Commission through the STRAIGHT project (QLK5-2001-00276), the European Union Structural Funds-Objective 1 North Sweden and Swedish sawmills.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.