1,056
Views
132
CrossRef citations to date
0
Altmetric
Original Articles

Understanding decay resistance, dimensional stability and strength changes in heat-treated and acetylated wood

, , &
Pages 14-22 | Received 14 Aug 2009, Published online: 29 Oct 2009
 

Abstract

Reductions in hygroscopicity, increased dimensional stability and decay resistance of heat-treated wood depend on decomposition of a large portion of the hemicelluloses in the wood cell wall. In theory, these hemicelluloses are converted to small organic molecules, water and volatile furan-type intermediates that can polymerize in the cell wall. Reductions in hygroscopicity and improved dimensional stability of acetylated wood depend on esterification of the accessible hemicelluloses in the cell wall reducing hydrogen bonding with water and bulking the cell wall back to its green volume. Stability is not 100% since the water molecule is smaller than the acetyl group so water can access hydroxyl sites even when the wood is fully acetylated. The cell-wall moisture content is too low in acetylated wood to support fungal attack so the initial enzymic attack starting the colonization does not take place. Strength properties are reduced in heat-treated wood owing to the degradation of the cell-wall matrix resulting from the hemicellulose loss. Strength properties are not significantly changed in acetylated wood and acetylation results in greatly improved wet strength and wet stiffness properties.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.