241
Views
15
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES

Aging law of spruce wood

&
Pages 46-52 | Received 30 May 2012, Accepted 23 Aug 2012, Published online: 17 Sep 2012
 

Abstract

Accelerated aging of spruce wood samples have been carried out by thermo-hydro (TH) treatments. These treatments were applied to accelerate the chemical reactions that take place during the natural aging of wood. In order to avoid dissimilar chemical reactions between the TH treatments and the natural aging, mild temperatures (between 100 and 150°C) have been selected at low relative humidity (RH). The mechanical properties of non-aged, natural aged and accelerated aged spruce wood have been compared. It is apparent that longitudinal Young's modulus of accelerated aged wood increase slightly at the beginning of the treatment and is followed by a reduction. Along the radial direction, Young's modulus remains almost unchanged. On the other hand the radial strength is severely reduced. From these results, the relative radial strength has been fitted on the chemical kinetic law. The rate constant of this law has been calculated and the treatment temperature and wood moisture content have been integrated. Finally this law has been extrapolated to standard climatic conditions in order to predict the loss of strength of old wood by knowing its age and its mean climate history of temperature and RH (ambiance condition).

Acknowledgements

The financial support of the Swiss National Science Foundation (FNS) for the project (N° K21K-122336/1) is acknowledged with gratitude.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.