225
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Numerical investigation on the spraying and explosibility characteristics of coal dust

, , &
Pages 287-296 | Received 01 Oct 2013, Accepted 30 Jun 2014, Published online: 20 Oct 2014
 

Abstract

This paper utilises FLUENT software to simulate the spraying and explosion of coal dust in a spherical explosion chamber. The influence of particle size on coal dust spraying is analysed. Explosion easily develops for small particle sizes under the same conditions of coal dust concentration and ignition temperature. For large-size coal dust particles, the speeds of release and transmission reduce dramatically due to lack of oxygen inside. Explosion is very difficult to develop in such conditions. Coal dusts with smaller particle size distribute uniformly in the chamber, whereas larger particles concentrate in parts of the chamber. The influence of coal dust concentration, ignition temperature and particle size on the pressure of coal dust explosion is also studied. The results show that, when ignition temperature is less than a certain value, the maximum pressure increases rapidly with the growth of ignition temperature. As ignition temperature is larger than the value, the change of the maximum pressure is small. The maximum explosion pressure increases first and then decreases with the increase of coal dust concentration. Because the inside of large size particles burn only partially due to lack of oxygen and slow combustion heat release and transfer, the decrease of the maximum explosion pressure is proportional with the increase of particle size.

Additional information

Funding

Funding. This research is supported by the Specialised Research Foundation for the Doctoral Programme of Higher Education of China under [grant number 20121101110004]; Beijing Natural Science Foundation [grant number 8132034]; and the Foundation of State Key Laboratory of Explosion Science and Technology [grant number ZDKT11–01].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.