358
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation of crack formation process in clays during drying and wetting

&
Pages 27-41 | Received 22 Sep 2005, Published online: 20 Feb 2007
 

Abstract

Clays generally crack upon drying and the cracks gradually close up because of expansion of the clays induced by rainfall infiltration. Based on the concept of air drainage ratio, we introduce an improved simplified consolidation theory for unsaturated soils and apply it to solve the crack formation problem. We present initial conditions, special consideration, and finite-element (FEM) formulations for simulation of cracks under axisymmetric conditions. Similar to finding solutions for sand-well consolidation problems, a prism of clays surrounded by polygonal distributed cracks is simplified as a cylinder. Numerical simulations using the FEM formulations are performed on the processes of crack occurrence, propagation, and closure during drying and wetting. To investigate the influence of air drainage ratio distribution, three different schemes are adopted for computation. It is found that the behaviour of cracks in clays during drying and wetting can be well represented using the approach proposed in the paper. The simplified consolidation theory used in the paper for unsaturated soils is more suitable for crack analysis than the general consolidation theory currently applied.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.