954
Views
39
CrossRef citations to date
0
Altmetric
Articles

Rock slope stability assessment using finite element based modelling – examples from the Indian Himalayas

, &
Pages 215-230 | Received 30 Dec 2012, Accepted 10 Jan 2014, Published online: 03 Apr 2014
 

Abstract

Numerical modelling of rock slides is a versatile approach to understand the failure mechanism and the dynamics of rock slopes. Finite element slope stability analysis of three rock slopes in Garhwal Himalaya, India has been carried out using a two dimensional plane strain approach. Two different modelling techniques have been attempted for this study. Firstly, the slope is represented as a continuum in which the effect of discontinuities is considered by reducing the properties and strength of intact rock to those of rock mass. The equivalent Mohr-Coulomb shear strength parameters of generalised Hoek-Brown (GHB) criterion and modified Mohr-Coulomb (MMC) criterion has been used for this continuum approach. Secondly, a combined continuum-interface numerical method has been attempted in which the discontinuities are represented as interface elements in between the rock walls. Two different joint shear strength models such as Barton-Bandis and Patton’s model are used for the interface elements. Shear strength reduction (SSR) analysis has been carried out using a finite element formulation provided in the PHASE2. For blocky or very blocky rock mass structure combined continuum-interface model is found to be the most suitable one, as this model is capable of simulating the actual field scenario.

Acknowledgement

The authors are grateful to the Director of CSIR-CBRI for his kind permission to publish this work. The technical discussion with Professor Mahendra Singh, Department of Civil Engineering, Indian Institute of Technology, Roorkee is acknowledged.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.