277
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Slope stability of bioreactor landfills during leachate injection: Effects of geometric configurations of horizontal trench systems

&
Pages 126-138 | Received 08 Jul 2013, Accepted 01 May 2014, Published online: 15 Jul 2014
 

Abstract

In bioreactor landfills, different configurations of closely spaced horizontal trench (HT) systems are often considered as leachate recirculation systems to achieve uniform and rapid distribution of moisture in municipal solid waste (MSW). In this study, a numerical two-phase flow modelling was adopted to study the effects of geometric configuration of HT systems on the moisture distribution in MSW, and the stability of a simplified bioreactor landfill slope during continuous and intermittent leachate recirculation. Transient variations in pore water and capillary pressures in MSW were assessed, and slope stability analyses were performed using strength reduction technique. MSW was considered as heterogeneous and anisotropic with varied unit weight and saturated hydraulic conductivity. The results demonstrated that geometric configurations of HT systems significantly affected the moisture distribution, generation and distribution of pore water and capillary pressures in MSW, and considerably influenced the mechanical stability of bioreactor landfill slope. It was concluded that staggered configuration of closely spaced HT systems with intermittent sequences of leachate recirculation and subsequent gravity drainage in alternate shallow and deep HT layers should be adopted as they produce uniform moisture distribution and ensure the mechanical stability of landfill slope due to low induced pore pressures near side slope. Overall, this study presents a significant contribution to the understanding of the basic mechanisms controlling the geotechnical stability of bioreactor landfills during leachate operations. Furthermore, the capability of the adopted commercial code was verified with complexities related to bioreactors behaviour. However, further research is needed to validate the model based on field monitoring data at actual bioreactor landfills.

Additional information

Funding

This project was funded by the U.S. National Science Foundation (grant CMMI # 0600441), which is gratefully acknowledged

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.