271
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The effect of grain interlocking in discrete element modelling of rock cutting

ORCID Icon & ORCID Icon
Pages 394-417 | Received 18 Jul 2021, Accepted 05 Apr 2022, Published online: 19 Apr 2022
 

ABSTRACT

In this study, actual laboratory rock cutting tests on sandstone specimens that were performed at NTUA’s Laboratory of Excavation Engineering were simulated numerically with the use of a 3D bonded particle DEM model implemented in Yade. The numerical assembly was calibrated to closely match the macroscopic strength, Young’s modulus, and brittleness of the real material, by controlling the grain interlocking through careful selection of the appropriate value for the interaction range coefficient. The calibrated model was then used to examine the effect of the microparameters’ values on the cutting force history and the failure mechanism. The Fast Fourier Transformation was used to compare the characteristics of the simulated cutting force data with those from the actual cutting tests. It was found that for high values of the interaction range coefficient the numerical model showed a more brittle behaviour, while for low values the simulation behaved more realistically for the specific type of rock. It is concluded that the use of the interaction range coefficient can substantially provide more realistic simulations of the cutting process by capturing both the rock-cutting tool interaction and the failure mechanism.

List of Symbols and Abbreviations

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the NTUA’s Research Committee [NTUA’s Research Committee PhD fellowship].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.