345
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Load and resistance factor design versus reliability-based design of shallow foundations

ORCID Icon, &
Pages 277-286 | Received 25 Oct 2021, Accepted 28 Mar 2022, Published online: 02 Jun 2022
 

ABSTRACT

The load and resistance factor design (LRFD) approach employed in geotechnical design codes is often calibrated using the reliability-based design (RBD) method. However, the LRFD may not achieve the target safety level exactly. This paper makes comparisons between the LRFD and RBD by considering the ultimate and serviceability limit state design of strip foundations. The RBD is carried out via the Random Finite Element Method. It is found that the failure probability and the resulting foundation width for ULS obtained using the RBD increase with the soil spatial correlation length, gradually reaching a plateau. The comparison between the LRFD and RBD results for ULS suggests that the LRFD is conservative for low to medium soil variability, particularly at smaller correlation lengths. The reliability-based SLS design is less dependent on the soil correlation length, particularly for lower coefficients of variation of the soil elastic modulus. However, a resistance factor of 1.0 for SLS is unconservative, and resistance factors of 0.65, 0.7 and 0.8 are better aligned with the RBD when the target failure probabilities are 1×10−3, 1×10−2 and 1×10−1. The current study can be used to guide the design of shallow foundations and the calibration of the LRFD approach.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Canadian Standard Association Group Research Project Award and Mitacs under grant number: IT21047; and the Natural Sciences and Engineering Research Council of Canada.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.