291
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Interpretation of spatio-temporal variation of precipitation from spatially sparse measurements using Bayesian compressive sensing (BCS)

& ORCID Icon
Pages 554-571 | Received 11 Jul 2022, Accepted 07 Jan 2023, Published online: 16 Mar 2023
 

ABSTRACT

Precipitation might change rapidly and vary spatially, therefore, knowledge on spatio-temporal variation of precipitation plays a pivotal role in water resources management, hydrogeological hazard and risk assessment, and city resilience enhancement. However, precipitation monitoring data are collected through a limited number of precipitation stations in practice, and they are often sparse and discontinuous, particularly in spatial domain. Furthermore, regional precipitation data exhibits characteristics of seasonality, periodicity and highly non-stationarity on a long-time scale. Therefore, it is challenging to obtain a spatio-temporal variation of precipitation with high spatial resolution from monitoring data measured at a limited number of precipitation stations. To address these challenges, this study develops a non-parametric spatio-temporal Bayesian compressive sensing (ST-BCS) method for interpolation of spatio-temporally varying, but sparsely measured precipitation data in the spatial domain. The proposed method is able to not only provide precipitation interpolation results with high spatial resolution from a limited number of monitoring stations, but also quantify the associated interpolation uncertainty simultaneously. In addition, ST-BCS is directly applicable to the non-stationary spatio-temporal meteorological data. Furthermore, real precipitation datasets are established to benchmark different spatio-temporal interpolation methods. The benchmarking results show that the proposed ST-BCS method performs well and outperforms the spatial BCS method.

Acknowledgements

The work described in this paper was supported by a grant from the Research Grant Council of Hong Kong Special Administrative Region (Project no. C6006-20G) and a grant from Shenzhen Science and Technology Innovation Commission (Shenzhen-Hong Kong-Macau Science and Technology Project (Category C) No: SGDX20210823104002020), China. The financial support is gratefully acknowledged.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

Benchmarking datasets established in this study can be found in the attachment.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.