806
Views
94
CrossRef citations to date
0
Altmetric
Articles

Research on manufacturing grid resource service optimal-selection and composition framework

, , &
Pages 237-264 | Received 22 Jul 2010, Accepted 12 Nov 2010, Published online: 02 Feb 2011
 

Abstract

In order to address the resource service optimal-selection (RSOS) and composition problem in manufacturing grid (MGrid) system and provide high-quality service to users, an MGrid RSOS and composition framework (MGrid-RSOSCF) is investigated in this study. The process of RSOS and composition is divided into the following five steps in MGrid-RSOSCF: (1) decomposing the submitted manufacturing task into several subtasks (i.e. single resource service requested task) if the submitted task is a multiple resource service requested task; (2) searching out the qualified resource service for each decomposed subtask and generating the corresponding candidate resource service set; (3) retrieving, evaluating and comparing the quality of service (QoS) for each candidate resource service, and provide data for service optimal-selection and composition –if the submitted task is a single resource service requested task; (4) evaluating synthetically the overall quality of each candidate resource service and ranking them, and selecting the optimal one for the task – if the submitted manufacturing task is an multiple resource service requested task; (5) selecting one candidate resource service from each candidate resource service set and constructing a new composite resource service according to the submitted task requirements, and collecting all the possible resource service composite execution paths (RSCEP) and selecting the optimal paths to execute the task. The proposed MGrid-RSOSCF consists of five layers and each layer provides the corresponding necessary services and algorithms to address one problem mentioned above. The five layers are: (1) T-layer, responsible for MGrid task decomposition; (2) S-layer, responsible for resource service match and search; (3) Q-layer, responsible for QoS processing; (4) O-layer, responsible for evaluating and ranking the candidate resource service and (5) C-layer is responsible for resource service composition and optimal-selection. The case study and comparison of performances of the algorithms demonstrate that the proposed methods are sound on success rate and executing efficiency.

Acknowledgements

This article is partly supported by the Fundamental Research Funds for the Central Universities in China, and the NSFC (National Science Foundation of China) Project (No. 51005012 and No. 61074144) in China. The authors express their great appreciation to the valuable comments made by the three anonymous reviewers and the editors of Enterprise Information Systems.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.