107
Views
2
CrossRef citations to date
0
Altmetric
Articles

Cycle by cycle variations of LPG-gasoline dual fuel on a multi-cylinder MPFI gasoline engine

, ORCID Icon, ORCID Icon &
Pages 685-692 | Received 22 Nov 2016, Accepted 11 Jan 2017, Published online: 28 Mar 2017
 

ABSTRACT

Combustion stability of a multipoint port fuel injection spark ignition engine working on liquefied petroleum gas (LPG)-gasoline dual fuel mode of operation was analysed. LPG-gasoline ratio was varied from 0 to 100% by controlling the injector signals at wide open throttle condition and 3000 RPM. Increasing LPG ratio will give higher peak pressure and higher indicated mean effective pressure (IMEP) because of the higher flame propagation speed of LPG. The experiment showed that maximum pressure will occur nearer to top dead centre when compared to gasoline. Fluctuation in maximum pressure is higher for LPG and is minimum for 50% LPG. Time return map showed that combustion instabilibity will be more for 100% LPG and is less for 50% LPG. Coefficient of variation of IMEP and maximum pressure for gasoline is higher than LPG. With 100% LPG, NOx emission is almost three times that of gasoline. Hence it can be concluded that 50% LPG will give the better combustion characteristics when compared to other fuel blends.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.