198
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effect of bioethanol–diesel blends, exhaust gas recirculation rate and injection timing on performance, emission and combustion characteristics of a common rail diesel engine

, , &
Pages 511-523 | Received 09 Jan 2017, Accepted 27 Mar 2017, Published online: 25 May 2017
 

ABSTRACT

This investigation is focused on the effect of exhaust gas recirculation (EGR) and injection timing on the performance, combustion and exhaust emission characteristics of common rail direct injection (CRDI) engine fueled with bioethanol-blended diesel using computational fluid dynamics (CFD) simulation. Simulation is carried out for various EGR rates (0, 10, 20 and 30%), two different injection timings, and two different bioethanol–diesel blends (10 and 20%) at injection pressure. The equivalence ratio is kept constant in all the cases of bioethanol–diesel blends. The results indicate that the mean CO formation and ignition delay increase, whereas mean NO formation and in-cylinder temperature decrease, with increase in the EGR rate. Further, with an increase in percentage of the bioethanol blends, CO and soot formation decrease as compared to neat diesel. A significant increase in in-cylinder pressure (15%) is found at 14° before top dead centre (BTDC) compared to 9° BTDC, which leads to an increase in indicated thermal efficiency of 4% for neat diesel at 30% EGR. In the present study, maximum indicated thermal efficiency is obtained in the case of 10 and 20% bioethanol–diesel blend, and remains constant for all EGR rates considered in the study. Obtained results are validated with the available literature data and indicate good agreement.

Acknowledgements

The authors would like to acknowledge AVL-AST, Graz, Austria, for the granted use of AVL-FIRE under the University Partnership Program.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.