248
Views
5
CrossRef citations to date
0
Altmetric
Articles

Effect of exhaust gas recirculation rate on performance, emission and combustion characteristics of a common-rail diesel engine fuelled with n-butanol–diesel blends

, &
Pages 389-398 | Received 08 Apr 2017, Accepted 03 Aug 2017, Published online: 11 Sep 2017
 

ABSTRACT

Increasing fears of fossil fuel attenuation and tough emission protocols compel the research community to explore alternative renewable fuels for diesel engines. Butanol is desirable among renewable fuels due to its properties favorable to diesel engines. This study focused on the suitability of exhaust gas recirculation (EGR) and optimum injection timing on the performance, combustion and exhaust emission characteristics of common-rail direct-injection (CRDI) engine fueled with n-butanol-blended diesel using experimental and computational fluid dynamics (CFD) simulation. Various EGR rates and injection timings are considered for different butanol–diesel blends (0, 10, 20 and 30%). Obtained simulation results are validated with experimental data and found to be in good agreement. For all EGR rates and blends, nitrogen oxide (NO) emission is reduced drastically, whereas carbon monoxide (CO) and soot emissions are decreased moderately, with increase in n-butanol–diesel blends. The CO and soot emissions increase with EGR rate due to oxygen deficiency as well. Brake thermal efficiency is reduced by approximately 1% for neat diesel (Bu0) with increase in EGR rates. Soot emission for Bu30 (15 ° Before top dead centre (BTDC) is decreased by 23, 25, 24 and 26% for 0, 10, 20 and 30% EGR rates, respectively, compared to Bu0 (12° BTDC).

Acknowledgements

The authors sincerely acknowledge AVL-AST, Graz, Austria, for granted use of AVL-FIRE simulation software under the university partnership scheme.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.