212
Views
12
CrossRef citations to date
0
Altmetric
Articles

Bioelectricity generation using sulphate-reducing bacteria as anodic and microalgae as cathodic biocatalysts

, ORCID Icon, , &
Pages 81-86 | Received 06 May 2017, Accepted 12 Dec 2017, Published online: 18 Apr 2018
 

ABSTRACT

Because microalgal species carry out oxygenic photosynthesis, they can be employed in the cathode chamber of microbial fuel cells, thus negating the need for mechanical aeration for oxygen reduction reactions. A conventional H-shaped configuration is used for comparative analysis of bioelectricity generation using pure and mixed microalgal cultures. Three reactors are simultaneously inoculated with sulphate-reducing bacteria as anodic and mixed culture of microalgae (MA#1) and two pure species in the cathodic chamber in separate reactors (MA#2; MA#3). Maximum open circuit potentials of 670, 476 and 529 mV are achieved with MA#3, MA#2 and MA#1, respectively. Power densities on the order of 442.5, 69 and 135 mW/m3 are obtained for microalgal cultures MA#3, MA#2 and MA#1, respectively. The highest power and current density values are obtained with MA#3 inoculated with pure algal species. The algal species are also examined for their lipid content with the use of Fourier transform infrared spectroscopy, Nile red spectroscopy and lipid content analysis. A good amount of lipid content is shown in spectroscopy images. Biomass content is highest for the algal consortium (MA#1) whereas lipid content is best in the case of pure algal species (MA#2).

Acknowledgements

The authors are grateful to University Grant Commission, Basic Scientific Research, New Delhi, for a financial grant, and the Fuel Cell Lab, I.I.T. Delhi, for conducting the experiments.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

UGC India [SRF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.