132
Views
0
CrossRef citations to date
0
Altmetric
Articles

Dynamic analysis of rotor-bearing system by considering the transverse crack on rotor

ORCID Icon & ORCID Icon
Pages 336-350 | Received 15 Mar 2017, Accepted 10 Jul 2017, Published online: 26 Jul 2017
 

Abstract

In this study, a new improved theoretical model of rotor-bearing system has been presented to analyse the behaviour of the system due to the transverse crack on the rotor. Firstly, a mathematical model of the system with a transverse crack on rotor has been developed. In the modelling, the rotor is taken as Timoshenko beam and the unbalance force also included, which vary with rotating speed. The rotor is supported by two healthy deep groove ball bearing at both ends. The contact between balls and races of the bearings is considered as nonlinear spring, whose stiffness is obtained by Hertzian contact deformation theory. After the modelling of the rotor, the equation of motion has been derived which represents the dynamic behaviour of the system. Bifurcation diagrams are used to investigate the influence of depth and size of the crack on the dynamic behaviour of rotor ball-bearings system. Results indicate that if the depth and size of the crack increase the system becomes highly chaotic and unstable.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.