18
Views
0
CrossRef citations to date
0
Altmetric
Articles

Axisymmetric MHD viscous flows bounded by a solid plane normal to a uniform ambient magnetic field: fundamental flows and application to a solid sphere translating normal to the wall

ORCID Icon &
Pages 443-468 | Received 30 Nov 2017, Accepted 24 Sep 2018, Published online: 20 Dec 2018
 

ABSTRACT

This work first determines two axisymmetric fundamental Magneto Hydrodynamic (MHD) flows induced, in a conducting Newtonian liquid domain bounded by a plane wall, by distributing either radial or axial points forces on a circular ring located in a plane parallel with the wall and normal to a prescribed uniform ambient magnetic field B=Bez. This is achieved, for both a perfectly conducting and an insulating wall, by using the fundamental flow due to a source point analytically obtained elsewhere. Each resulting axisymmetric fundamental MHD flow velocity components (radial and axial ones) and pressure is then analytically expressed in terms of one-dimensional integrals and of the so-called Hartmann layer thickness d=(μ/σ)/B. These quantities are numerically calculated and the wall–ring interactions are then discussed. Such interactions are found to deeply affect the fundamental flows’ streamlines and pressure field prevailing in an unbounded liquid. The derived fundamental flows are then employed to investigate, using a boundary formulation, the drag experienced by a solid sphere immersed in the liquid and translating normal to the wall.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.