Publication Cover
Acta Clinica Belgica
International Journal of Clinical and Laboratory Medicine
Volume 72, 2017 - Issue 6
351
Views
15
CrossRef citations to date
0
Altmetric
Original Papers

The evaluation of the anti-cancer activity of ixazomib on Caco2 colon solid tumor cells, comparison with bortezomib

&
 

Abstract

Proteasome inhibition has recently emerged as a clinically effective anticancer therapeutic approach. The first proteasome inhibitor, bortezomib (Velcade, PS-341), and new proteasome inhibitors including ixazomib have become more important in the development of targeted cancer therapies. Under physiological conditions, MLN9708 (ixazomib citrate), the stable citrate ester drug substance, hydrolyzes rapidly to MLN2238 (ixazomib), the biologically active boronic acid. It is a second-generation proteasome inhibitor, similar to the well-known proteasome inhibitor bortezomib, which is currently being investigated in phase 3 trials as a treatment for multiple Myeloma. Despite the proven efficacy of these drugs in hematologic malignancies, clinical activity is limited to solid tumors such as colon adenocarcinoma. This study is the first to investigate and compare the antiproliferative and apoptotic effects of MLN2238 and bortezomib on human colon adenocarcinoma Caco2 cells. The antiproliferative effects of MLN2238 and bortezomib were determined using WST-1; apoptotic effects of this drug were determined by caspase-3 and a mitochondrial membrane potential (JC-1) activity assay. Expression levels associated with proteasome inhibition and apoptosis of NF-κB and c-myc mRNA were evaluated by RT-PCR. At 24 and 48 h, MLN2238 showed significant time- and concentration-dependent antiproliferative and apoptotic effects on Caco2 cells. Depending on increasing mitochondrial depolarization and caspase-3 activation, MLN2238 induced apoptosis at level similar to that of bortezomib. In addition, MLN2238 downregulated NF-κB and c-myc mRNA expression levels. For the first time, MLN2238 was shown to induce antiproliferative and apoptotic effects on human colon adenocarcinoma cells that are comparable with those of bortezomib; these in vitro data in Caco2 cells support the development of MLN2238 for colon cancer.

Acknowledgment

The flow cytometry analysis of this research was studied in the Anadolu University Medicinal Plants, Drugs, and Scientific Research Center.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.